PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Identification and reduction of blast – induced effects on a limestone quarry

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Identyfikacja i ograniczenie skutków prowadzenia prac strzałowych w kamieniołomie wydobywającym wapienie
Języki publikacji
EN
Abstrakty
EN
In Turkey, a great increase in mining and tunneling operations is seen in recent years. Production is generally done by drilling and blasting method in metallic mines, quarries and a part of coal mines and also in tunnels. It is known that the blast-induced vibrations can be cause undesired effects on nature or construction in around. In this study, field works and analysis of the blast-induced vibration in order to minimize are given for chosen quarry. Methodology for Minimizing Blast-Induced Vibrations (Turkish Patent Institute – TPI 2007/03459) was used for measurement of blasting and modelling of blasting data in compliance with Turkish and German standards.
PL
W ostatnich latach w Turcji notuje się znaczny wzrost ilości prac związanych z wydobyciem surowców i drążeniem tuneli. W kopalniach rud metali, kamieniołomach oraz w części kopalń węgla produkcja odbywa się w głównej mierze przy wykorzystaniu odwiertów i prac strzałowych, w niektórych kopalniach drążone są tunele. Jest kwestia powszechnie wiadomą, że drgania wywołane pracami strzałowymi wywołują niekorzystne oddziaływania w środowisku naturalnych i budowlach znajdujących się w pobliżu. W artykule przedstawiono wyniki analiz i badań terenowych drgań wywołanych pracami strzałowymi w wybranym kamieniołomie w celu ich minimalizacji. Metodologia minimalizacji poziomu drgań wywołanych pracami strzałowymi (Turecki Instytut Patentowy – TPI 2007/03459) wykorzystana została do pomiarów zasięgu oddziaływań prac strzałowych i modelowaniu danych i parametrów prac strzałowych zgodnie z tureckimi i niemieckimi normami.
Rocznik
Strony
205--220
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wykr.
Twórcy
autor
  • Dokuz Eylul University, Engineering Faculty, Department of Mining Engineering, Izmir, Turkey
Bibliografia
  • [1] Afeni T.B., Osasan S.K., 2009. Assessment of noise and ground vibration induced during blasting operations in an open pit mine – a case study on Ewekoro limestone quarry Nigeria. Min. Sci. Technol., 19 (4), 420-4.
  • [2] Ak H., Iphar M., Yavuz M., Konuk A., 2009. Evaluation of ground vibration effect of blasting operations in a magnesite mine. Soil Dynamics and Earthquake Engineering. 29, 669-676.
  • [3] Aldas G.G.U., Ecevitoglu B. 2007. Methodology for Minimizing Blast-Induced Vibrations. (TPI. 2007/03459) (In Turkish).
  • [4] Aldas G.G.U., Ecevitoglu B., 2008. Waveform analysis in mitigation of blast-induced vibrations. Journal of Applied Geophysics, 66, 25-30.
  • [5] Aldas G.G.U., 2005. Application of Stockwell Transform to Blasting Induced Ground Vibration. International Journal of Surface Mining, Reclamation and Environment, 19, 2, 100-107.
  • [6] Aldas G.G.U., 2010. Investigation of blast design parameters from the point of seismic signals. International Journal of Surface Mining, Reclamation and Environment, 24, 1, 80-90.
  • [7] Ataei M., Sereshki F., 2017. Improved prediction of blast-induced vibrations in limestone mines using Genetic Algorithm. Journal of Mining & Environment, 8, 2, 291-304.
  • [8] Baris N., 2008. Hydrogeological Investigation Of Tahtali Dam Basin And Assessment Of Groundwater Vulnerability By Using Ahp-Drastic Method. Dokuz Eylul University, The Graduate School of Natural and Applied Sciences, PhD Thesis, İzmir, Turkey.
  • [9] Basu D., Sen M., 2005. Blast i nduced ground vibration norms- A critical review. National Seminar on Policies. Statutes & Legislation in Mines.
  • [10] CGYDD, 2005. 2002/49/EC numbered, Regulation prepared in line with the Directive on the Management and Evaluation of Environmental Noise. Turkey.
  • [11] Chen G., Huang L., 2000. Analysis of ground vibrations caused by open pit production blasts. In: Proceedings of the first world conference on explosives and blasting technique. Munich, Germany.
  • [12] Constantopoulos I.V., Wessem V.Y., Verbrugge J.C., 2012. Vertical response spectra for an impact on ground surface. Eartq. Struct. 3 (3-4), 435-455.
  • [13] DIN 4150-3, 1999. Structural vibration-Effects of vibration on structures. Deutsches Institut für Normung e.V. Dokument Number:din 4150-3.
  • [14] Dowding C.H., 1985. Blast Vibration Monitoring and Control. Prentice-Hall International Inc., Englewood Cliffs, New Jersey, USA.
  • [15] Erdoğan B., ve Güngör T., 1992. Menderes Masifi’nin kuzey kanadının stratigrafisi ve tektonik evrimi. Türkiye Petrol Jeologları Derneği Bülteni, 4/1, 9-34.
  • [16] Faramarzi F., Ebrahimi Farsangi M.A., Mansouri H., 2014. Simultaneous investigation of blast induced ground vibration and airblast effects on safety level of structures and human in surface blasting. Int. J. Min. Sci. Tech., 24 (5), 663-9.
  • [17] Felice J.J., 1993. Applications of modelling to reduce vibration and air blast levels. Paper presented at 4th International symposium on rock fragmentation by blasting, Vienna.
  • [18] Gad E.F., Wilson J.L., Moore A.J., Richards A.B., 2005. Effects of mine blasting on residential structures. J. Perform. Constr. Facilities, 19 (3), 222-8.
  • [19] Kahriman A., 2001. Prediction of particle velocity caused by blasting for an infrastructure excavation covering granite bedrock. Miner Resources Eng., 10 (2), 205-18.
  • [20] Kahriman A., Ozer U., Aksoy M., Karadogan A., Tuncer G., 2006a. Environmental impacts of bench blasting at Hisarcik Boron open pit mine in Turkey. International Journal of Geosciences Environmental Geology, p. 1015-1023.
  • [21] Khandelwal M., Singh T.N., 2009. Prediction of blast-induced ground vibration using artificial neural network. Int. J. Rock Mech. Min. Sci., 46 (7), 1214-22.
  • [22] Mahmoud S., 2014. Blast load inducedresponse and the associated damage of buildings considering SSI. Earthq. Struct., 7 (3), 231-252.
  • [23] Marilena C., Mauricio D., Jacopo S., 2012. Complexity analysis of blast-induced vibrations in underground mining: a case study. Int. J. Min. Sci. Techno., 22 (1), 125-31.
  • [24] Nateghi R., Kiany M., Gholipouri O., 2009. Control negative effects of blasting waves on concrete of the structures by analyzing of parameters of ground vibration. Tunnelling and Underground Space Tech., 24 (6), 608-16.
  • [25] Oncu M.E., Yon B., Akkoyun O., Taskıran T., 2015. Investigation of blast-induced ground vibration effects on rural buildings. Struct. Eng. Mech., 54 (3), 545.
  • [26] Ozer U., Kahriman A., Aksoy M., Adiguzel D., Karadogan A., 2008. The analysis of ground vibrations induced by bench blasting at Akyol quarry and practical blasting charts. Environ. Geol., 54, 737-743.
  • [27] Rosenthal M.F., Morlock G.L., 1987. Blasting guidance manual. U.S. Office of surface mining reclamation and enforcement.
  • [28] Singh P.K., Vogt W., Singh R.B., Singh M.M., Singh D.P., 1997. Response of surface structures to rock blasting. Miner Resources Eng., 6 (4), 185-94.
  • [29] Singh T.N., Singh V., 2005. An intelligent approach to prediction and control ground vibration in mines. Geotech. Geol. Eng., 23 (3), 249-62.
  • [30] Siskind D.E., Crum S.V., Plis M.N., 1993. Blast Vibrations and Other Potential Causes of Damage in Homes Near a Large Surface Coal Mine in Indiana. RI 9455, Bureau of Mines, Minneapolis, USA.
  • [31] Siskind D.E., Stagg M.S., Kopp J.W., Dowding C.H., 1980. Structure Response and Damage Produced by Ground Vibration from Surface Mine Blasting. RI 8507, Bureau of Mines, Minneapolis, USA.
  • [32] Toraño J., Ramírez-Oyanguren P., Rodríguez R., Diego I., 2006. Analysis of the environmental effects of ground vibrations produced by blasting in quarries. Int. J. Min. Reclam. Environ., 20 (4), 249-66.
  • [33] Uyar G.G., Babayigit E., 2016. Guided wave formation in coal mines and associated effects to buildings. Structural Engineering and Mechanics, 60, 6, 923-937.
  • [34] Villaescusa E., Onederra I., Scott C., 2004. Blast induced damage and dynamic behaviour of hangingwalls in bench stoping. Fragblast, 8 (1), 23-40.
  • [35] Wu Y.K., Hao H., Zhou Y.X., Chong K., 1998. Propagation characteristics of blast-induced shock waves in a jointed rock mass. Soil. Dyn. Earthquake Eng., 17, 407-12.
  • [36] Xuelong L., Enyuan W., Zhonghui L., Xiaofei B., Liang C., Junjun F., Nan L., 2016. Blasting wave pattern recognition based on Hilbert-Huang transform. Geomechanics and Engineering, 11, 5, 607-624.
  • [37] Yi C.P., Lu W.B., 2006. Research on influence of blasting vibration on grouted rockbolt. Yantu Lixue/Rock Soil Mech., 27 (8), 1312-6.
  • [38] Zhang Y.H., Lin J.H., Willams F.W., Li Q.S., 2006. Wave passage effect of seismic ground motions on the response of multiply supported structures. Struct. Eng. Mech., 20 (6), 655.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-06bb8e05-1d17-4daf-b094-e4fe61a03418
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.