Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the era of smart manufacturing and Industry 4.0, the rapid development of modelling in production processes results in the implementation of new techniques, such as additive manufacturing (AM) technologies. However, large investments in the devices in the field of AM technologies require prior analysis to identify the possibilities of improving the production process flow. This paper proposes a new approach to determine and optimize the production process flow with improvements made by the AM technologies through the application of the Petri net theory. The existing production process is specified by a Petri net model and optimized by AM technology. The modified version of the system is verified and validated by the set of analytic methods safeguarding against the formal errors, deadlocks, or unreachable states. The proposed idea is illustrated by an example of a real-life production process.
Słowa kluczowe
Rocznik
Tom
Strony
art. no. e140693
Opis fizyczny
Bibliogr. 51 poz., rys., tab.
Twórcy
- Institute of Mechanical Engineering, University of Zielona Góra, Szafrana 4, 65-516 Zielona Góra, Poland
autor
- Institute of Control & Computation Engineering, University of Zielona Góra, Szafrana 2, 65-516 Zielona Góra, Poland
autor
- Institute of Mechanical Engineering, University of Zielona Góra, Szafrana 4, 65-516 Zielona Góra, Poland
autor
- Institute of Control & Computation Engineering, University of Zielona Góra, Szafrana 2, 65-516 Zielona Góra, Poland
Bibliografia
- [1] V. Majstorovic et al., “Cyber-Physical Manufacturing Metrology Model (CPM3) – Big Data, Analytics Issue,” Procedia CIRP, vol. 72, pp. 503–508, Jan. 2018, doi: 10.1016/j.procir.2018.03.091.
- [2] A. Schumacher, S. Erol, andW. Sihn, “A Maturity Model for Assessing Industry 4.0 Readiness and Maturity of Manufacturing Enterprises,” Procedia CIRP, vol. 52, pp. 161–166, Jan. 2016, doi: 10.1016/j.procir.2016.07.040.
- [3] T.H. Kim, J. Jeong, and Y. Kim, “A Conceptual Model of Smart Manufacturing Execution System for Rolling Stock Manufacturer,” Procedia Comput. Sci., vol. 151, pp. 600–606, Jan. 2019, doi: 10.1016/j.procs.2019.04.081.
- [4] J. Patalas-Maliszewska, M. Topczak, and S. Kłos, “The Level of the Additive Manufacturing Technology Use in Polish Metal and Automotive Manufacturing Enterprises,” Appl. Sci., vol. 10, no. 3, p. 3, Jan. 2020, doi: 10.3390/app10030735.
- [5] H. Bikas, P. Stavropoulos, and G. Chryssolouris, “Additive manufacturing methods and modelling approaches: a critical review,” Int. J. Adv. Manuf. Technol., vol. 83, no. 1, pp. 389–405, Mar. 2016, doi: 10.1007/s00170-015-7576-2.
- [6] M.M. Francois et al., “Modeling of additive manufacturing processes for metals: Challenges and opportunities,” Curr. Opin. Solid State Mater. Sci., vol. 21, no. 4, pp. 198–206, Aug. 2017, doi: 10.1016/j.cossms.2016.12.001.
- [7] S. Li, S. Zhang, T.G. Habetler, and R.G. Harley, “Modeling, Design Optimization, and Applications of Switched Reluctance Machines – A Review,” IEEE Trans. Ind. Appl., vol. 55, no. 3, pp. 2660–2681, May 2019, doi: 10.1109/TIA.2019.2897965.
- [8] X.Wang, T.D. Strous, D. Lahaye, H. Polinder, and J.A. Ferreira, “Modeling and Optimization of Brushless Doubly-Fed Induction Machines Using Computationally Efficient Finite-Element Analysis,” IEEE Trans. Ind. Appl., vol. 52, no. 6, pp. 4525–4534, Nov. 2016, doi: 10.1109/TIA.2016.2593715.
- [9] M. Hafner, M. Popescu, A. Boglietti, and A. Cavagnino, “Analytic Modeling of Inverter-Fed Induction Machines – A Practical Approach for Matching Measurement and Simulation Data,” IEEE Trans. Ind. Appl., vol. 52, no. 6, pp. 4710–4718, Nov. 2016, doi: 10.1109/TIA.2016.2594039.
- [10] A. Leontaritis, A. Nassehi, and J.M. Yon, “A Monte Carlo Analysis of the Effects of Geometric Deviations on the Performance of Magnetic Gears,” IEEE Trans. Ind. Appl., vol. 56, no. 5, pp. 4857–4869, Sep. 2020, doi: 10.1109/TIA.2020.3008115.
- [11] G. Domingues-Olavarría, F.J. Márquez-Fernández, P. Fyhr, A. Reinap, M. Andersson, and M. Alaküla, “Optimization of Electric Powertrains Based on Scalable Cost and Performance Models,” IEEE Trans. Ind. Appl., vol. 55, no. 1, pp. 751–764, Jan. 2019, doi: 10.1109/TIA.2018.2864943.
- [12] A.J. Pińa Ortega, S. Paul, R. Islam, and L. Xu, “Analytical Model for Predicting Effects of Manufacturing Variations on Cogging Torque in Surface-Mounted Permanent Magnet Motors,” IEEE Trans. Ind. Appl., vol. 52, no. 4, pp. 3050–3061, Jul. 2016, doi: 10.1109/TIA.2016.2554102.
- [13] L. Qiao, S. Kao, and Y. Zhang, “Manufacturing process modelling using process specification language,” Int. J. Adv. Manuf. Technol., vol. 55, no. 5, pp. 549–563, Jul. 2011, doi: 10.1007/s00170-010-3115-3.
- [14] H. Lin, Y. Fan, and S.T. Newman, “Manufacturing process analysis with support of workflow modelling and simulation,” Int. J. Prod. Res., vol. 47, no. 7, pp. 1773–1790, Apr. 2009, doi: 10.1080/00207540701644151.
- [15] A. Afanasyev and N. Voit, “Multiagent system to analyse manufacturing process models,” in Uncertainty Modelling in Knowledge Engineering and Decision Making, vol. 10, World Scientific, 2016, pp. 444–449, doi: 10.1142/97898 13146976_0072.
- [16] W. Sukthomya and J. Tannock, “The optimisation of neural network parameters using Taguchi’s design of experiments approach: an application in manufacturing process modelling,” Neural Comput. Appl., vol. 14, no. 4, pp. 337–344, Dec. 2005, doi: 10.1007/s00521-005-0470-3.
- [17] A. Hassan, A. Siadat, J.-Y. Dantan, and P. Martin, “Conceptual process planning – an improvement approach using QFD, FMEA, and ABC methods,” Rob. Comput. Integr. Manuf., vol. 26, no. 4, pp. 392–401, Aug. 2010, doi: 10.1016/j.rcim.2009.12.002.
- [18] S. Bagalagel and W. ElMaraghy, “Product mix optimization model for an Industry 4.0- enabled manufacturing-remanufacturing system,” Procedia CIRP, vol. 93, pp. 204–209, Jan. 2020, doi: 10.1016/j.procir.2020.03.029.
- [19] A.R. Bakhtari, V. Kumar, M.M. Waris, C. Sanin, and E. Szczerbicki, “Industry 4.0 Implementation Challenges in Manufacturing Industries: an Interpretive Structural Modelling Approach,” Procedia Comput. Sci., vol. 176, pp. 2384–2393, Jan. 2020, doi: 10.1016/j.procs.2020.09.306.
- [20] P. Palominos, L. Quezada, J. Donoso, and M. Gonzalez, “A Model of Economic Evaluation for the Acquisition of Flexible Manufacturing Technologies,” Procedia Manuf., vol. 39, pp. 565–573, Jan. 2019, doi: 10.1016/j.promfg.2020.01.420.
- [21] O.J. Fisher et al., “Considerations, challenges and opportunities when developing data-driven models for process manufacturing systems,” Comput. Chem. Eng., vol. 140, p. 106881, Sep. 2020, doi: 10.1016/j.compchemeng.2020.106881.
- [22] S. Kolla, M. Minufekr, and P. Plapper, “Deriving essential components of lean and industry 4.0 assessment model for manufacturing SMEs,” Procedia CIRP, vol. 81, pp. 753–758, Jan. 2019, doi: 10.1016/j.procir.2019.03.189.
- [23] P. Stavropoulos and P. Foteinopoulos, “Modelling of additive manufacturing processes: a review and classification,” Manufacturing Rev., vol. 5, p. 2, 2018, doi: 10.1051/mfreview/2017014.
- [24] S. Kadkhoda-Ahmadi, A. Hassan, and E. Asadollahi-Yazdi, “Activity modeling of preliminary additive manufacturing process planning,” Procedia CIRP, vol. 84, pp. 874–879, Jan. 2019, doi: 10.1016/j.procir.2019.05.018.
- [25] Z. Heng, L. Aiping, L. Xuemei, X. Liyun, and G. Moroni, “Modeling and Performance Evaluation of Multistage Serial Manufacturing Systems with Rework Loops and Product Polymorphism,” Procedia CIRP, vol. 63, pp. 471–476, Jan. 2017, doi: 10.1016/j.procir.2017.03.347.
- [26] J. Patalas-Maliszewska, M. ´Sliwa, and M. Topczak, “Modelling the Demand for AM Technologies in Polish Manufacturing Enterprises Using Bayesian Networks,” Appl. Sci., vol. 11, no. 2, p. 2, Jan. 2021, doi: 10.3390/app11020601.
- [27] A. İftar, “Supervisory Control of Manufacturing Systems Modeled by Timed Petri Nets,” IFAC-PapersOnLine, vol. 49, no. 31, pp. 120–124, Jan. 2016, doi: 10.1016/j.ifacol.2016.12.172.
- [28] J.-I. Latorre-Biel, J. Faulín, A.A. Juan, and E. Jiménez-Macías, “Petri Net Model of a Smart Factory in the Frame of Industry 4.0,” IFAC-PapersOnLine, vol. 51, no. 2, pp. 266–271, Jan. 2018, doi: 10.1016/j.ifacol.2018.03.046.
- [29] E. Best, R. Devillers, and M. Koutny, Petri Net Algebra. Berlin Heidelberg: Springer-Verlag, 2001, doi: 10.1007/978-3-662-04457-5.
- [30] C. Girault and R. Valk, Petri Nets for Systems Engineering: A Guide to Modeling, Verification, and Applications. Berlin Heidelberg: Springer-Verlag, 2003, doi: 10.1007/978-3-662-05324-9.
- [31] R.Wisniewski, “Design of Petri Net-Based Cyber-Physical Systems Oriented on the Implementation in Field Programmable Gate Arrays,” Energies, vol. 14, no. 21, p. 21, Jan. 2021, doi: 10.3390/en14217054.
- [32] R. Wiśniewski, Prototyping of Concurrent Control Systems Implemented in FPGA Devices. Springer International Publishing, 2017, doi: 10.1007/978-3-319-45811-3.
- [33] T. Murata, “Petri nets: Properties, analysis and applications,” Proc. IEEE, vol. 77, no. 4, pp. 541–580, Apr. 1989, doi: 10.1109/5.24143.
- [34] M.D. Jeng and S.C. Chen, “Heuristic search based on Petri net structures for FMS scheduling,” IEEE Trans. Ind. Appl., vol. 35, no. 1, pp. 196–202, Jan. 1999, doi: 10.1109/28.740865.
- [35] T.-T. Ku, C.-S. Li, C.-H. Lin, C.-S. Chen, and C.-T. Hsu, “Faulty Line-Section Identification Method for Distribution Systems Based on Fault Indicators,” IEEE Trans. Ind. Appl., vol. 57, no. 2, pp. 1335–1343, Mar. 2021, doi: 10.1109/TIA.2020.3045672.
- [36] L. Ghomri and H. Alla, “Continuous Petri Nets and Hybrid Automata for the analysis of manufacturing systems,” IFACPapersOnLine, vol. 48, no. 3, pp. 1024–1029, Jan. 2015, doi: 10.1016/j.ifacol.2015.06.218.
- [37] J.M. Silva, R. Javales, and J.R. Silva, “A new Requirements Engineering approach for Manufacturing based on Petri Nets,” IFAC-PapersOnLine, vol. 52, no. 10, pp. 97–102, Jan. 2019, doi: 10.1016/j.ifacol.2019.10.006.
- [38] P.Wenzelburger and F. Allgöwer, “A Petri Net Modeling Framework for the Control of Flexible Manufacturing Systems,” IFACPapersOnLine, vol. 52, no. 13, pp. 492–498, Jan. 2019, doi: 10.1016/j.ifacol.2019.11.111.
- [39] D. Lefebvre, “Deadlock-free scheduling for flexible manufacturing systems using untimed Petri nets and model predictive control,” IFAC-PapersOnLine, vol. 49, no. 12, pp. 384–389, Jan. 2016, doi: 10.1016/j.ifacol.2016.07.635.
- [40] J. Luo, K. Tan, H. Luo, and M. Zhou, “Inference Approach Based on Petri Nets,” Information Sciences, vol. 547, pp. 1008–1024, Feb. 2021, doi: 10.1016/j.ins.2020.09.023.
- [41] M. Liu et al., “Deadlock and liveness characterization for a class of generalized Petri nets,” Inf. Sci., vol. 420, pp. 403–416, Dec. 2017, doi: 10.1016/j.ins.2017.08.014.
- [42] J.R. Celaya, A.A. Desrochers, and R.J. Graves, “Modeling and analysis of multi-agent systems using petri nets,” in 2007 IEEE International Conference on Systems, Man and Cybernetics, Oct. 2007, pp. 1439–1444, doi: 10.1109/ICSMC.2007.4413960.
- [43] P. Bonet and C. Lladó, “PIPE v 2.5: a Petri Net Tool for Performance Modeling,” 2007.
- [44] R. Campos-Rebelo, F. Pereira, F. Moutinho, and L. Gomes, “From IOPT Petri nets to C: An automatic code generator tool,” in 2011 9th IEEE International Conference on Industrial Informatics, Jul. 2011, pp. 390–395, doi: 10.1109/INDIN.2011.6034908.
- [45] F. Pereira, F. Moutinho, and L. Gomes, “IOPT Tools User Manual – Version 1.1.” FCT UNL, 2014. Accessed: Jun. 17, 2021. [Online]. Available: http://gres.uninova.pt/iopt_usermanual.pdf
- [46] R. Wisniewski, G. Bazydło, L. Gomes, A. Costa, and M. Wojnakowski, “Analysis and Design Automation of Cyber-Physical System with Hippo and IOPT-Tools,” in IECON 2019 – 45th Annual Conference of the IEEE Industrial Electronics Society, Oct. 2019, vol. 1, pp. 5843–5848, doi: 10.1109/IECON.2019.8926692.
- [47] R. Wisniewski, M. Wojnakowski, and Ł. Stefanowicz, “Safety analysis of Petri nets based on the SM-cover computed with the linear algebra technique,” AIP Conf. Proc., vol. 2040, no. 1, p. 080008, Nov. 2018, doi: 10.1063/1.5079142.
- [48] R. Wiśniewski, A. Karatkevich, Ł. Stefanowicz, and M. Wojnakowski, “Decomposition of distributed edge systems based on the Petri nets and linear algebra technique,” J. Syst. Archit., vol. 96, pp. 20–31, Jun. 2019, doi: 10.1016/j.sysarc.2019.01.015.
- [49] J.-C. Huet, S. Lamouri, E. Talhi, and V. Fortineau, “A methodology for cloud manufacturing architecture in the context of industry 4.0,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68; no. 2; pp. 271–284, 2020.
- [50] M. Macko, J. Kopowski, P. Kotlarz, D. Mikołajewski, and I. Rojek, “Intelligent system supporting technological process planning for machining and 3D printing,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69; no. 2; p. e136722, 2021.
- [51] X. Yang, R.A. Barrett, M. Tong, N.M. Harrison, and S.B. Leen, “Towards a process-structure model for Ti-6Al-4V during additive manufacturing,” J. Manuf. Processes, vol. 61, pp. 428–439, Jan. 2021, doi: 10.1016/j.jmapro.2020.11.033.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-06ba3f78-9ac7-46e7-b535-88bcf6371c3c