PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Some results on fractional Hahn difference boundary value problems

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Fractional Hahn boundary value problems are significant tools to describe mathematical and physical phenomena depending on non-differentiable functions. In this work, we develop certain aspects of the theory of fractional Hahn boundary value problems involving fractional Hahn derivatives of the Caputo type. First, we construct the Green function for an αth-order fractional boundary value problem, with 1<α<2, and discuss some important properties of the Green function. The solutions to the proposed problems are obtained in terms of the Green function. The uniqueness of the solutions is proved by various fixed point theorems. The Banach’s contraction mapping theorem, the Schauder’s theorem, and the Browder’s theorem are used.
Wydawca
Rocznik
Strony
art. no. 20220247
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
  • Department of Mathematics, Faculty of Science, South Valley University, Qena 83523, Egypt
  • Department of Mathematics, Faculty of Science, Suez University, Suez, Egypt
  • Department of Mathematics, Faculty of Science, South Valley University, Qena 83523, Egypt
Bibliografia
  • [1] W. Hahn, Über orthogonalpolynome, die q-differenzengleichungen genü gen, Math. Nachr. 2 (1949), no. 1–2, 4–34, DOI: https://doi.org/10.1002/mana.19490020103.
  • [2] K. Aldwoah, Generalized time scales and associated difference equations, Ph.D. thesis, Cairo University, Cairo, Egypt, 2009, https://www.academia.edu/470909/Generalized_Time_Scales_and_Associated_Difference_Equations.
  • [3] M. H. Annaby, A. Hamza, and K. Aldwoah, Hahn difference operator and associated Jackson-Nörlund integrals, J. Optim. Theory Appl. 154 (2012), no. 1, 133–153, DOI: https://doi.org/10.1007/s10957-012-9987-7.
  • [4] M. Annaby, A. Hamza, and S. Makharesh, A Sturm-Liouville theory for Hahn difference operator, in: Frontiers in Orthogonal Polynomials and q-Series, World Scientific, New Jersey, 2018, pp. 35–83, DOI: https://doi.org/10.1142/9789813228887_0004.
  • [5] A. E. Hamza and S. M. Ahmed, Existence and uniqueness of solutions of Hahn difference equations, Adv. Differ. Equ. 2013 (2013), no. 1, 1–15, DOI: https://doi.org/10.1186/1687-1847-2013-316.
  • [6] A. E. Hamza and S. Ahmed, Theory of linear Hahn difference equations, J. Adv. Math. 4 (2013), no. 1, 441–461. https://rajpub.com/index.php/jam/article/view/2496.
  • [7] A. E. Hamza and S. Makharesh, Leibniz rule and Fubinis theorem associated with Hahn difference operator, J. Adv. Math. 12 (2016), no. 6, 6335–6345, DOI: https://doi.org/10.24297/jam.v12i6.3836.
  • [8] K. Oraby and A. Hamza, Taylor theory associated with Hahn difference operator, J. Inequal. Appl. 2020 (2020), no. 1, 1–19, DOI: https://doi.org/10.1186/s13660-020-02392-y.
  • [9] T. Brikshavana and T. Sitthiwirattham, On fractional Hahn calculus, Adv. Differ. Equ. 2017 (2017), no. 1, 1–15, DOI: https://doi.org/10.1186/s13662-017-1412-y.
  • [10] N. Patanarapeelert and T. Sitthiwirattham, Existence results for fractional Hahn difference and fractional Hahn integral boundary value problems, Discrete Dyn. Nat. Soc. 2017 (2017), no. 7895186, 13 pp, DOI: https://doi.org/10.1155/2017/7895186.
  • [11] N. Patanarapeelert and T. Sitthiwirattham, On nonlocal Robin boundary value problems for Riemann-Liouville fractional Hahn integrodifference equation, Bound. Value Probl. 2018 (2018), no. 18, 1–16, DOI: https://doi.org/10.1186/s13661-018-0969-z.
  • [12] N. Patanarapeelert and T. Sitthiwirattham, On nonlocal fractional symmetric Hanh integral boundary value problems for fractional symmetric Hahn integrodifference equation, AIMS Math. 5 (2020), no. 4, 3556–3572, DOI: https://doi.org/10.3934/math.2020231.
  • [13] T. Sitthiwirattham, On a nonlocal boundary value problem for nonlinear second-order Hahn difference equation with two different q ω, -derivatives, Adv. Differ. Equ. 2016 (2016), no. 1, 1–25, DOI: https://doi.org/10.1186/s13662-016-0842-2.
  • [14] V. Wattanakejorn, S. K. Ntouyas, and T. Sitthiwirattham, On a boundary value problem for fractional Hahn integro-difference equations with four-point fractional integral boundary conditions, AIMS Math. 7 (2022), no. 1, 632–650, DOI: http://dx.doi.org/doi:10.3934/math.2022040.
  • [15] M. H. Annaby and Z. S. Mansour, q-Fractional Calculus and Equations, Vol. 2056, Springer-Verlag, Berlin, Heidelberg, 2012, DOI: https://doi.org/10.1007/978-3-642-30898-7.
  • [16] G. Gasper, M. Rahman, and G. George, Basic Hypergeometric Series, Vol. 96, Cambridge University Press, UK, 2004, DOI: https://doi.org/10.1017/CBO9780511526251.
  • [17] E. Zeidler, Nonlinear Functional Analysis and Its Applications: II/B Nonlinear Monotone Operators, Springer, New York, 1986, DOI: https://doi.org/10.1007/978-1-4612-0981-2.
  • [18] P. Awasthi, Boundary value problems for discrete fractional equations, Ph.D. thesis, The University of Nebraska-Lincoln, 2013, https://digitalcommons.unl.edu/mathstudent/43?utm_source=digitalcommons.unl.edu.
  • [19] N. Allouch, J. R. Graef, and S. Hamani, Boundary value problem for fractional q-difference equations with integral conditions in Banach spaces, Fractal Fract. 6 (2022), no. 5, 237, DOI: https://doi.org/10.3390/fractalfract6050237.
  • [20] K. Ma, X. Li, and S. Sun, Boundary value problems of fractional q-difference equations on the half-line, Bound. Value Probl. 2019 (2019), no. 1, 1–16, DOI: https://doi.org/10.1186/s13661-019-1159-3.
  • [21] W. S. Chung, T. Kim, and H. I. Kwon, On the q-analog of the Laplace transform, Russ. J. Math. Phys. 21 (2014), no. 2, 156–168, DOI: https://doi.org/10.1134/S1061920814020034.
  • [22] V. Gupta and T. Kim, On a q-analog of the Baskakov basis functions, Russ. J. Math. Phys. 20 (2013), no. 3, 276–282, DOI: https://doi.org/10.1134/S1061920813030035.
  • [23] T. Kim and D. Kim, On some degenerate differential and degenerate difference operators, Russ. J. Math. Phys. 29 (2022), no. 1, 37–46, DOI: https://doi.org/10.1134/S1061920822010046.
  • [24] T. Kim and D. S. Kim, Some identities on degenerate r-Stirling numbers via Boson operators, Russ. J. Math. Phys. 29 (2022), no. 4, 508–517, DOI: https://doi.org/10.1134/S1061920822040094.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-06b77d7a-c0e6-4be5-999d-5015f2422ec7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.