PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microarray-core based circular photonic crystal fiber for high chemical sensing capacity with low confinement loss

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this article, a circular photonic crystal fiber based chemical sensor has been presented where core region is designed with an array of elliptical holes. The proposed structure is numerically investigated by using a full vectorial finite element method. From the numerical results, it is observed that introducing an array of elliptical holes helps to obtain the high relative sensitivity and realizes a low confinement loss. In addition, the increase in the value of the diameter of holes in the innermost ring enhances the relative sensitivity. Moreover, the increase in the value of the diameter of holes in the outermost ring reduces the confinement loss. In this work, we have considered an industrially valuable chemical ethanol. Simulation results disclose that the highest relative sensitivity of proposed photonic crystal fiber is 29.25% for ethanol and the confinement loss is 7.68 × 10–7 dB/m at the wavelength 1.5 µm.
Czasopismo
Rocznik
Strony
41--49
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
  • Department of Information and Communication Technology, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh
autor
  • Department of Information and Communication Technology, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh
Bibliografia
  • 1] REEVES W.H., SKRYABIN D.V., BIANCALANA F., KNIGHT J.C., RUSSELL P.ST.J., OMENETTO F.G., EFIMOV A., TAYLOR A.J., Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres, Nature 424(6948), 2003, pp. 511–515.
  • [2] UEBEL P., KA FAI MAK, FROSZ M., TRAVERS J., RUSSELL P., Scientific and industrial applications of hollow-core photonic crystal fibers, Applied Industrial Optics: Spectroscopy, Imaging and Metrology 2015, Arlington, Virginia, United States, June 7–11, 2015, article ID AITh1F.3.
  • [3] PADMANABHAN S., SHINOJ K.V., MURUKESHAN M.V., PADMANABHAN P., Highly sensitive optical detection of specific protein in breast cancer cells using microstructured fiber in extremely low sample volume, Journal of Biomedical Optics 15(1), 2010, article ID 017005.
  • [4] WU B.Q., LU Y., HAO C.J., DUAN L.C., LUAN N.N., ZHAO Z.Q., YAO J.Q., Hollow-core photonic crystal fiber based on C2H2 and NH3 gas sensor, Applied Mechanics and Materials 411–413, 2013, pp. 1577–1580.
  • [5] ZHONGNAN XU, KAILIANG DUAN, ZEJIN LIU, YISHAN WANG, WEI ZHAO, Numerical analyses of splice losses of photonic crystal fibers, Optics Communications 282(23), 2009, pp. 4527–4531.
  • [6] BEGUM F., NAMIHIRA Y., ABDUR RAZZAK S.M., SHUBI KAIJAGE, NGUYEN HOANG HAI, TATSUYA KINJO, KAZUYA MIYAGI, NIANYU ZOU, Design and analysis of novel highly nonlinear photonic crystal fibers with ultra-flattened chromatic dispersion, Optics Communications 282(7), 2009, pp. 1416–1421.
  • [7] MD. SELIM HABIB, MD. SAMIUL HABIB, ABDUR RAZZAK S.M., MD. ANWAR HOSSAIN, Proposal for highly birefringent broadband dispersion compensating octagonal photonic crystal fiber, Optical Fiber Technology 19(5), 2013, pp. 461–467.
  • [8] ABDUR RAZZAK S.M., MD. ABDUL GOFFAR KHAN, BEGUM F., KAIJAGE S., Guiding properties of a decagonal photonic crystal fiber, Journal of Microwaves, Optoelectronics and Electromagnetic Applications 6(1), 2007, pp. 44–49.
  • [9] RUI HAO, ZHIQUAN LI, GUIFANG SUN, LIYONG NIU, YUCHAO SUN, Analysis on photonic crystal fibers with circular holes in elliptical configuration, Optical Fiber Technology 19(5), 2013, pp. 363–368.
  • [10] YU HOU, FEI FAN, ZI-WEI JIANG, XIANG-HUI WANG, SHENG-JIANG CHANG, Highly birefringent polymer terahertz fiber with honeycomb cladding, Optik – International Journal for Light and Electron Optics 124(17), 2013, pp. 3095–3098.
  • [11] LI ZHANG, GUANG-JUN REN, JIAN-QUAN YAO, A new photonic crystal fiber gas sensor based on evanescent wave in terahertz wave band: design and simulation, Optoelectronics Letters 9(6), 2013, pp. 438–440.
  • [12] OLYAEE S., NARAGHI A., AHMADI V., High sensitivity evanescent-field gas sensor based on modified photonic crystal fiber for gas condensate and air pollution monitoring, Optik – International Journal for Light and Electron Optics 125(1), 2014, pp. 596–600.
  • [13] MORSHED M., ASADUZZAMAN S., MD. FAIZUL HUQ ARIF, AHMED K., Proposal of simple gas sensor based on Micro structure optical fiber, 2015 International Conference on Electrical Engineering and Information Communication Technology (ICEEICT), 2015, pp. 1–5.
  • [14] JIYOUNG PARK, SEJIN LEE, SOAN KIM, KYUNGHWAN OH, Enhancement of chemical sensing capability in a photonic crystal fiber with a hollow high index ring defect at the center, Optics Express 19(3), 2011, pp. 1921–1929.
  • [15] MORSHED M., MD. FAIZUL HUQ ARIF, ASADUZZAMAN S., AHMED K., Design and characterization of photonic crystal fiber for sensing applications, European Scientific Journal 11(12), 2015, pp. 228–235.
  • [16] CORDEIRO C.M.B., FRANCO M.A.R., CHESINI G., BARRETTO E.C.S., LWIN R., CRUZ C.H.B., LARGE M.C.J., Microstructured-core optical fibre for evanescent sensing applications, Optics Express 14(26), 2006, pp. 13056–13066.
  • [17] ADEMGIL H., Highly sensitive octagonal photonic crystal fiber based sensor, Optik – International Journal for Light and Electron Optics 125(20), 2014, pp. 6274–6278.
  • [18] SAMIUL HABIB M., SELIM HABIB M., RAZZAK S.M.A., GOFFAR KHAN M.A., NAMIHIRA Y., HOSSAIN M.A., Design of highly birefringent holey fibers with near-zero ultra-flattened chromatic dispersion and ultralow confinement loss, Journal of Microwaves, Optoelectronics and Electromagnetic Applications 12(1), 2013, pp. 102–110.
  • [19] ASADUZZAMAN S., AHMED K., MD. FAIZUL HUQ ARIF, MORSHED M., Proposal of a simple structure photonic crystal fiber for lower indexed chemical sensing, 18th International Conference on Computer and Information Technology (ICCIT), 2015, pp. 127–131.
  • [20] OLYAEE S., NARAGHI A., Design and optimization of index-guiding photonic crystal fiber gas sensor, Photonic Sensors 3(2), 2013, pp. 131–136.
  • [21] SAITOH K., KOSHIBA M., HASEGAWA T., SASAOKA E., Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion, Optics Express 11(8), 2003, pp. 843–852.
  • [22] SELLERI S., VINCETTI L., CUCINOTTA A., ZOBOLI M., Complex FEM modal solver of optical waveguides with PML boundary conditions, Optical and Quantum Electronics 33(4–5), 2001, pp. 359–371.
  • [23] YANYI HUANG, YONG XU, YARIV A., Fabrication of functional microstructured optical fibers through a selective-filling technique, Applied Physics Letters 85(22), 2004, pp. 5182–5184.
  • [24] BISE R.T., TREVOR D.J., Sol-gel derived microstructured fiber: fabrication and characterization, Optical Fiber Communications Conference (OFC), March 6–11, 2005, Anaheim, CA, USA.
  • [25] ISSA N.A., VAN EIJKELENBORG M.A., FELLEW M., COX F., HENRY G., LARGE M.C.J., Fabrication and study of microstructured optical fibers with elliptical holes, Optics Letters 29(12), 2004, pp. 1336–1338.
  • [26] ARGYROS A., BASSETT I.M., VAN EIJKELENBORG M.A., LARGE M.C.J., ZAGARI J., NICOROVICI N.A.P., MCPHEDRAN R.C., DE STERKE C.M., Ring structures in microstructured polymer optical fibres, Optics Express 9(13), 2001, pp
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-06ad3a46-6056-4795-9c95-4b8b66389d3c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.