PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Full-Field Force Mapping of Cutting Forces Driven by Local Density Variations in Norway Spruce Wood

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Full-Field Force Mapping of Cutting Forces Driven by Local Density Variations in Norway Spruce Wood. Local density variations in wood influence cutting performance. In this study, full-field force mapping was applied to investigate the relationship between density distribution and cutting forces. Cutting forces were measured using piezoelectric transducers during cutting of Norway spruce. X-ray computed tomography (CT) scans of the workpiece provided spatially resolved density data. Force maps were constructed by aligning recorded forces with kerf positions and CT data. Results showed that cutting forces increased in regions of higher density, particularly near knot boundaries and latewood zones. Inner knot areas exhibiting lower density correlated with reduced cutting forces. Normal-force patterns were less responsive to local density changes. No self-feeding behaviour was observed. The integrated CT–force mapping technique enables spatial analysis of cutting responses in relation to anatomical wood features.
Twórcy
  • Department of Forestry and Wood Technology, Faculty of Technology, Linnaeus University, Sweden
  • Department of Engineering Sciences and Mathematics, Luleå University of Technology, Sweden
  • Department of Forestry and Wood Technology, Faculty of Technology, Linnaeus University, Sweden
Bibliografia
  • 1. AXELSSON, B. (1994). Lateral cutting force during machining of wood due to momentary disturbances in the wood structure and degree of wear of the cutting tool (Doctoral dissertation). Luleå University of Technology, Sweden.
  • 2. AXELSSON, B., GRUNDBERG, S. A., & GRÖNLUND, J. A. (1991). The use of gray scale images when evaluating disturbances in cutting force due to changes in wood structure and tool shape. Holz als Roh- und Werkstoff, 49(7–8), 321–326.
  • 3. AXELSSON, B., LUNDBERG, Å. S., & GRÖNLUND, J. A. (1993). Studies of the main cutting force at and near a cutting edge. Holz als Roh- und Werkstoff, 51(1), 43–48.
  • 4. BSI. (1999). BS 3159-1 Woodworking saws for hand use – Part 1: Specification for hand saws. British Standards Institution.
  • 5. CHUCHALA, D., HUANG, Y., ORLOWSKI, K. A., BUCK, D., STENKA, D., FREDRIKSSON, M., & SVENSSON, M. (2025). Fracture toughness and shear yield stress determination from quasi-linear cutting tests of Scots pine (Pinus sylvestris L.) with a normalisation process by local density aided by X-ray computed tomography. European Journal of Wood and Wood Products, 83(4), 148.
  • 6. CHUCHAŁA, D., ORŁOWSKI, K., SANDAK, A., SANDAK, J., PAULINY, D., & BARAŃSKI, J. (2014). The effect of wood provenance and density on cutting forces while sawing Scots pine (Pinus sylvestris L.). BioResources, 9, 5349–5361.
  • 7. DINWOODIE, J. M. (2000). Timber: Its nature and behaviour. CRC Press.
  • 8. EYMA, F., MÉAUSOONE, P.-J., & MARTIN, P. (2004). Study of the properties of thirteen tropical wood species to improve the prediction of cutting forces in mode B. Annals of Forest Science, 61(1), 55–64.
  • 9. FREYBURGER, C., LONGUETAUD, F., MOTHE, F., CONSTANT, T., & LEBAN, J.-M. (2009). Measuring wood density by means of X-ray computer tomography. Annals of Forest Science, 66(8), 804.
  • 10. HUANG, Y., CHUCHALA, D., BUCK, D., ORLOWSKI, K. A., FREDRIKSSON, M., & SVENSSON, M. (2024). Analysis of the relationship between cutting forces and local structural properties of Scots pine wood aided by computed tomography. International Journal of Advanced Manufacturing Technology, 135(9), 4975–4987.
  • 11. LINDGREN, O. (1992). Medical CT-scanners for non-destructive wood density and moisture content measurements(Doctoral dissertation). Luleå University of Technology, Sweden.
  • 12. MELLQVIST, D., BUCK, D., & JOHANSSON, J. (2023). Experimental study of the effect of velocity on cutting forces for bevelled handsaw teeth. 25th International Wood Machining Seminar (IWMS-25), Nagoya, Japan, October 4–7, 2023.
  • 13. MELLQVIST, D., BUCK, D., & JOHANSSON, J. (2025). Interrelation of local density variations with cutting forces in wood through full-field force mapping. Presented at Wood – the Material of the 21st Century: Woodworking and Forestry for Material and Construction Needs in an Innovative Economy. Warsaw University of Life Sciences, Warsaw, Poland, June 5–6, 2025.
  • 14. NATIONAL INSTRUMENTS. (2023). LabVIEW (Version 2023) [Computer software]. Austin, TX: National Instruments.
  • 15. NAYLOR, A. (2014). Evaluating the cutting mechanics of woodworking hand-saw teeth. International Journal of Materials, Mechanics and Manufacturing, 2(2), 113–116.
  • 16. NAYLOR, A., HACKNEY, P., PERERA, N., & CLAHR, E. (2012). A predictive model for the cutting force in wood machining developed using mechanical properties. BioResources, 7(3), 2883–2894.
  • 17. SIS. (2003). SS-EN 13183-1 Moisture content of a piece of sawn timber – Part 1: Determination by oven dry method.
  • 18. THIBAUT, B., DENAUD, L., COLLET, R., MARCHAL, R., BEAUCHÊNE, J., MOTHE, F., MÉAUSOONE, P.-J., MARTIN, P., LARRICQ, P., & EYMA, F. (2016). Wood machining with a focus on French research in the last 50 years. Annals of Forest Science, 73(1), 163–184.
  • 19. THYBRING, E. E., & FREDRIKSSON, M. (2023). Wood and moisture. In Springer Handbook of Wood Science and Technology (pp. 355–397). Springer.
  • 20. ZHU, Z., BUCK, D., EKEVAD, M., MARKLUND, B., GUO, X., CAO, P., & ZHU, N. (2019). Cutting forces and chip formation revisited based on orthogonal cutting of Scots pine. Holzforschung, 73(2), 131–138.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-06a219d7-1852-40cd-8bb6-23e080cd9cda
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.