PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Weakly idempotent lattices and bilattices, non-idempotent Plonka functions

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Proceedings of the AAA88 - 88th Workshop on General Algebra Editors for the Special Issue: Anna Romanowska, Jonathan D. H. Smith
Języki publikacji
EN
Abstrakty
EN
In this paper, we study weakly idempotent lattices with an additional interlaced operation. We characterize interlacity of a weakly idempotent semilattice operation, using the concept of hyperidentity and prove that a weakly idempotent bilattice with an interlaced operation is epimorphic to the superproduct with negation of two equal lattices. In the last part of the paper, we introduce the concepts of a non-idempotent Plonka function and the weakly Plonka sum and extend the main result for algebras with the well known Plonka function to the algebras with the non-idempotent Plonka function. As a consequence, we characterize the hyperidentities of the variety of weakly idempotent lattices, using non-idempotent Plonka functions, weakly Plonka sums and characterization of cardinality of the sets of operations of subdirectly irreducible algebras with hyperidentities of the variety of weakly idempotent lattices. Applications of weakly idempotent bilattices in multi-valued logic is to appear.
Wydawca
Rocznik
Strony
509--535
Opis fizyczny
Bibliogr. 43 poz.
Twórcy
  • Applied Mathematics Department, European Regional Academy, 10 Davit Anhaght str., Yerevan 0037, Armenia
  • Department of Mathematics and Mechanics, Yerevan State University, 1 Alex Manoogian str., Yerevan 0025, Armenia
Bibliografia
  • [1] A. D. Anosov, On homomorphisms of many-sorted algebraic systems in connection with cryptographic applications, Discrete Math. Appl. 17(4) (2007), 331–347.
  • [2] B. H. Arnold, Distributive lattices with a third operation defined, Pacific J. Math. 1 (1951), 33–41.
  • [3] A. Avron, The structure of interlaced bilattices, Math. Structures Comput. Sci. 6 (1996), 287–299.
  • [4] G. M. Bergman, An Invitation on General Algebra and Universal Constructions, Second Edition, Springer, 2015.
  • [5] F. Bou, R. Jansana, U. Rivieccio, Varieties of interlaced bilattices, Algebra Universalis 66 (2011), 115–141.
  • [6] A. Craig, L. M. Cabrer, H. A. Priestley, Beyond FOUR: representations of non-interlaced bilattices using natural duality, Research Workshop on Duality Theory in Algebra, Logic and Computer Science, University of Oxford, 16–16, June 13–14, 2012.
  • [7] B. A. Davey, The product representation theorem for interlaced pre-bilattices: some historical remarks, Algebra Universalis 70 (2013), 403–409.
  • [8] K. Denecke, J. Koppitz, M-Solid Varieties of Algebras. Advances in Mathematic, 10, Spriger-Science + Business Media, New York, 2006.
  • [9] K. Denecke, S. L. Wismath, Hyperidentities and Clones, Gordon and Breach Science Publishers, 2000.
  • [10] M. Fitting, Bilattices and the theory of truth, J. Philos. Logic 18 (1989), 225–256.
  • [11] M. Fitting, Bilattices in logic programming, in.: G. Epstein (ED.), 20th International Symposium on Multiple-Valued Logic, 238–246, IEEE Press, 1990.
  • [12] M. Fitting, Bilattices and the semantics of logic programming, J. Logic Programming 11 (1991), 91–116.
  • [13] E. Fried, G. Gratzer, A nonassocaative extension of the class of distributive lattices, Pacific J. Math. 49(1) (1973), 59–78.
  • [14] E. Fried, Weakly associative lattices with congruence extension property, Algebra Universalis 4 (1974), 151–162.
  • [15] G. Gargov, Knowledge, uncertainty and ignorence in logic: bilattices and beyond, J. Appl. Non-Classical Logics 9 (1999), 195–283.
  • [16] G. Gratzer, Universal Algebra, Springer-Verlag, 2008.
  • [17] M. L. Ginsberg, Multi-valued logics: a uniform approach to reasoning in artificial intelligence, Computational Intelligence 4 (1988), 265–316.
  • [18] E. Graczyńska, On normal and regular identities, Algebra Universalis 27 (1990), 387–397.
  • [19] E. Graczyńska, Algebra of M-Solid Quasilattices, Siatras International Bookshop, Athens, 2014.
  • [20] J. Jakubik, M. Kolibiar, On some properties of a pair of lattices, Czechoslovak Math. J. 4 (1954), 1–27.
  • [21] J. Jakubik, M. Kolibiar, Lattices with a third distributive operation, Math. Slovaca 27 (1977), 287–292.
  • [22] A. Jung, U. Rivieccio, Priestley duality for bilattices, Studia Logica 100 (2012), 223–252.
  • [23] S. A. Kiss, Transformations on Lattices and Structures of Logic, New York, 1947.
  • [24] I. I. Melnik, Nilpotent shift of manifolds, Math. Notes 14 (1973), 387–397.
  • [25] Yu. M. Movsisyan, Bilattices and hyperidentities, Proceedings of the Steclov Institute of Mathematics 274 (2011), 174–192
  • [26] Yu. M. Movsisyan, Interlaced, modular, distributive and Boolean bilattices, Armenian J. Math. 1(3) (2008), 7–13.
  • [27] Yu. M. Movsisyan, Introduction to the Theory of Algebras with Hyperidentities, Yerevan State University Press, Yerevan, 1986. (Russian)
  • [28] Yu. M. Movsisyan, Hyperidentitties in algebras and varieties, Uspekhi Mat. Nauk 53(1) (1998), 61–114, (Russian). English transl. in Russian Math. Surveys 53 (1998), 57–108.
  • [29] Yu. M. Movsisyan, Hyperidentities and hypervarieties, Sci. Math. Jpn. 54(3) (2001), 595–640.
  • [30] Yu. M. Movsisyan, Hyperidentities of Boolean algebras, Izv. Ross. Akad. Nauk Ser. Mat. 56 (1992), 654–672, (Russian). English transl. in Russian Acad. Sci. Izv. Math. 40 (1993), 607–622.
  • [31] Yu. M. Movsisyan, Algebras with hyperidentities of the variety of Boolean algebras, Izv. Russ. Acad. Nauk. Ser. Mat. 60 (1996), 127–168. English transl. in Russian Acad. Sci. Izv. Math. 60 (1996), 1219–1260.
  • [32] Yu. M. Movsisyan, V. A. Aslanyan, Hyperidentities of De Morgan algebras, Log. J. IGPL 20 (2012), 1153–1174.
  • [33] Yu. M. Movsisyan, A. B. Romanowska, J. D. H. Smith, Superproducts, hyperidentities, and algebraic structures of logic programming, J. Combin. Math. Combin. Comput. 58 (2006), 101–111.
  • [34] R. Padamanabhan, P. Penner, A hyperbase for binary lattice hyperidentities, J. Automat. Reason. 24 (2000), 365–370.
  • [35] J. Plonka, On a method of construction of abstract algebras, Fund. Math. 61 (1967), 183–189.
  • [36] J. Plonka, On varieties of algebras defined by identities of some special forms, Houston J. Math. 14 (1988), 253–263
  • [37] J. Plonka, A. Romanowska, Semilattice sums, Universal Algebra and Quasigroup Theory, Helderman Verlag, Berlin, 1992, 123–158.
  • [38] A. P. Pynko, Regular bilattices, J. Appl. Non-Classical Logics 10 (2000), 93–111.
  • [39] A. Romanowska, J. D. H. Smith, Modes, World Scientific, 2002.
  • [40] H. A. Priestley, Distributive bilattices and their cousins: representation via natural dualities, Research Workshop on Duality Theory in Algebra, Logic and Computer Science, 18–18, University of Oxford, June 13-14, 2012.
  • [41] U. Rivieccio, An algebraic study of bilattice-based logics, PhD Dissertation, University of Barcelona, 2010.
  • [42] A. Romanowska, A. Trakul, On the structure of some bilattices, Universal and Applied Algebra, 235–253, Turawa, 1988.
  • [43] J. D. H. Smith, On groups of hypersubstitutions, Algebra Universalis 64 (2010), 39–48.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-06a1a565-954a-4a50-9f96-263aece46e24
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.