PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Successive stages of calcitization and silicification of Cenomanian spicule-bearing turbidites based on microfacies analysis, Polish Outer Carpathians

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Mid-Cretaceous turbidites with large proportions of sponge spicules are widely distributed in the Silesian Nappe of the Outer Carpathians, giving rise to diversified types of sediments, from spiculites to spicule-bearing siliciclastics and calcarenites. Part of this succession, Middle–Late Cenomanian in age, was transformed into cherts. A microfacies study showed that these turbidite sediments underwent several stages of calcitization and silicification, which took place during Mid-Cretaceous times in different sedimentary environments, i.e., on a northern shelf bordering the Silesian Basin and on a deep sea floor. The first diagenetic changes were related to changes to the biotic components of the turbidite layers, dominated by siliceous sponge spicules. This process, which took place in the spiculitic carbonate mud on the shelves, was related to the calcitization of sponge spicules. Calcareous clasts and calcified skeletal elements also were corroded by bacteria. After transportation down the slope, the biogenic and siliciclastic particles were deposited below the carbonate compensation depth. Taphonomic processes on the basin floor and alternating phases of carbonate and silica cementations, recrystallization and dissolution occurred in these sediments and were related to the diversification in composition of successive turbidite layers. Silicification was related to the formation of quartz precipitates as fibrous chalcedony or microcrystalline quartz, which were derived from the earlier dissolution of amorphous silica, originating mostly from siliceous sponge spicules and radiolarian skeletons. However, a source of silica from hydrothermal vents was also possible. The initial silica precipitation could have taken place in a slightly acidic environment, where calcite was simultaneously dissolved. A number of silicification stages, visible as different forms of silica precipitate inside moulds after bioclasts, occur in the particular turbidite layers. They were related to changes in various elements of the pore-water profile after descending turbidity-current flows. A very low sedimentation rate during the Middle–Late Cenomanian in the Silesian Basin may have favoured the sequence of initial calcitization and silicification stages of the turbidite sediments.
Rocznik
Strony
187--203
Opis fizyczny
Bibliogr. 89 poz., rys.
Twórcy
autor
  • Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • Institute of Geological Science, Jagiellonian University, Oleandry 2a, 30-063 Kraków, Poland
  • Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • Institute of Geography, Pedagogical University of Cracow, Podchorążych 2, 30-084 Kraków, Poland
autor
  • Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • Institute of Geological Science, Jagiellonian University, Oleandry 2a, 30-063 Kraków, Poland
Bibliografia
  • 1. Alexandrowicz, S. W., 1973. Gaize-type sediments in the Carpathian flysch. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 1973(1): 1-17.
  • 2. Baltuck, M., 1986. Authigenic silica in Tertiary and Upper Cretaceous sediments of the East Mariana Basin, Deep Sea Drilling Project Site 585. In: Moberly, R., Schlanger, S. O. et al. (eds), Initial Reports of the Deep Sea Drilling Project, 89: 389-398.
  • 3. Bavestrello, G., Cattaneo-Vietti, R., Cerrano, C. & Sarr, M., 1996. Spicule dissolution in living Tethya omanensis (Porifera: De- mospongiae) from a tropical cave. Bulletin of Marine Science, 58: 598-601.
  • 4. Bąk, K., 2006. Sedimentological, geochemkal and microfaunal responses to environmental changes around the Cenomanian- Turonian boundary in the Outer Carpathian Basin; a record from the Subsilesian Nappe, Poland. Palaeogeography, Palaeoclimatology, Palaeoecology, 237: 335-358.
  • 5. Bąk, K., 2007a. Deep-water facies succession around the Cenomanian-Turonian boundary in the Outer Carpathian Basin: Sedimentary, biotic and chemkal records in the Silesian Nappe, Poland. Palaeogeography, Palaeoclimatology, Palaeoecology, 248: 255-290.
  • 6. Bąk, K., 2007b. Organic-rich and manganese sedimentation during the Cenomanian-Turonian boundary event in the Outer Carpathian Basin, a new record from the Skole Nappe, Poland. Palaeogeography, Palaeoclimatology, Palaeoecology, 256: 21-46.
  • 7. Bąk, K., 2007c. Environmental changes during the Cenomanian- Turonian boundary event in the Outer Carpathian basins: a synthesis of data from various tectonic-facies units. Annales Societatis Geologorum Poloniae, 77: 171-191.
  • 8. Bąk, K., Bąk, M. & Paul, Z., 2001. Barnasiówka Radiolarian Shale Formation - a new lithostratigraphic unit in the Upper Cenomanian-lowermost Turonian of the Polish Outer Carpathians. Annales Societatis Geologorum Poloniae, 71: 75-103.
  • 9. Bąk, M., 2011. Tethyan radiolarians at the Cenomanian-Turonian Anoxic Event from the Apennines (Umbria-Marche) and the Outer Carpathians: Palaeoecological and Palaeoenvironmental implications. In: Tyszka, J. (ed.), Methods and Applications in Micropalaeontology. Part II. Studia Geologica Polonica, 134: 7-279.
  • 10. Bąk, M., Bąk, K. & Ciurej, A., 2005. Mid-Cretaceous spicule-rich flysch deposits in the Silesian Nappe of the Polish Outer Carpathians; radiolarian and foraminiferal biostratigraphy. Geological Quarterly, 49: 275-290.
  • 11. Bąk, M., Bąk, K. & Ciurej, A., 2011. Palaeoenvironmental signal from the microfossils record in the Mikuszowice Cherts of the Silesian Nappe, Polish Outer Carpathians. In: Bąk, M. Kaminski, M. A. & Waśkowska, A. (eds), Integrating Microfossil Records from the Oceans and Epicontinental Seas. Grzybowski Foundation Special Publication, 17: 15-25.
  • 12. Bąk, M., Bąk, K., Górny Z. & Stożek B., in press. EvMence of bacteriogenic iron and manganese oxyhydroxides in Albian- Cenomanian marine sediments of the Carpathian realm (Poland). Annales Societatis Geologorum Poloniae.
  • 13. Bryndal, T., 2014. A method for identification of small Carpathian catchments more prone to flash flood generation. Based on the example of south-eastern part of the Polish Carpathians. Carpathian Journal of Earth and Environmental Sciences, 9: 109-122.
  • 14. Buesseler, K. O., 1998. The decoupling of production and particulate export in the surface ocean. Global Biogeochemical Cycles, 12: 297-310.
  • 15. Burtan, J. & Skoczylas-Ciszewska, K., 1956. Szczegółowa Mapa Geologiczna Polski, 1:50000, arkusz Bochnia. Państwowy Instytut Geologiczny, Warszawa. [In Polish.]
  • 16. Burtanówna, J., 1933. Der geologische Bau der Umgegend von Myślenice westlich vom Raba-Fluss. Annales de la Société géologique de Pologne, 9: 279-293.
  • 17. Bustillo, M. A. & Riuz-Ortiz, P. A., 1987. Chert occurrences in carbonate turbidites: examples from the Upper Jurassic of the Betic Mountains (southern Spain). Sedimentology, 34: 611-662.
  • 18. Cady, S. L., Wenk, H. R. & Downing, K. H., 1996. HRTEM of microcrystalline opal in chert and porcelanite from the Monterey Formation, California. American Mineralogists, 81: 1380-1395.
  • 19. Calvert, S. E., 1971. Composition and origin of North Atlantic deep sea cherts. Contribution to Mineralogy and Petrology, 33: 273-288.
  • 20. Calvert, S. E., 1974. Deposition and diagenesis of silica in marine sediments. International Associations of Sedimentologists, Special Publication, 1: 273-299.
  • 21. Clayton, C. J., 1986. The chemical environment of flint formation in Upper Cretaceous chalks. In: Sieveking G. de C. & Hart, M. B. (eds), The Scientific Study of Flint and Chert. Cambridge University Press, Cambridge, pp. 43-54.
  • 22. Davis, K. J., Nealson, K. H. & Luttge, A. 2007. Calcite and dolomite dissolution rates in the context of microbe-mineral surface interactions. Geobiology, 5: 191-205.
  • 23. DeMaster , D. J., 2003. The diagenesis of biogenic silica: chemical transformations occurring in the water column, seabed, and crust. In: Holland, H. & Turekian, K. (eds), Treatise on Geochemistry, vol. 7. Elsevier Ltd., Amsterdam, pp. 87-98.
  • 24. DeMaster, D. J., Ragueneau, O. & Nittrouer, C. A., 1996. Preservation efficiencies and accumulation rates for biogenic silica and organic C, N, and P in high-latitude sediments: the Ross Sea. Journal of Geophysical Research, 101: 18501-18518.
  • 25. Dietrich, R., Hobbs, C. & Lowry, W., 1963. Dolomitization interrupted by silicification. Journal of Sedimentary Petrology, 33: 646-663.
  • 26. Elorza, J. J. & Bustillo, M. A., 1989. Early and late diagenetic chert in carbonate turbidites of the Senonian flysch, northeast Bilbao, Spain. In: Hein, J. R. & Obradovic, J. (eds), Siliceous Deposits of the Tethys and Pacific Regions. Springer, New York, pp. 93-105.
  • 27. Ferris, F. G., Fyfe, W. S. & Beveridge, T. J., 1987. Bacteria as nucleation sites for authigenic minerals in a metal-contaminated lake sediment. Chemical Geology, 63: 225-232.
  • 28. Flörke, O. W., Graetsch, H., Martin, B., Röller, K. & Wirth, R., 1991. Nomenclature of microcrystalline and non-crystalline silica minerals, based on structure and microstructure. Neues Jahrbuch für Mineralogie-Abhandlungen, 163: 19-42.
  • 29. Fritz, G. K., 1958. Schwammstozen, Tuberolithe und Schutt - breccien im Weissen Jura der Schwabischen Alb. Arbeiten aus dem Geologisch-Paläontologischen Institut Technische Hochschule Stuttgart, N.F., 13: 1-118.
  • 30. Froget, C., 1976. Observation sur l’alteration de la silice et des silicates au cours de la lithification carbonatée (région Siculo- Tunisienne). Géologie Méditerranéenne, 3: 219-226.
  • 31. Gallinari, M., Ragueneau, O., Corrin, L., DeMaster, D. J. & Treguer, P., 2002. The importance of water column processes on the dissolution properties of biogenic silica in deep-sea sediments I. Solubility. Geochimica et Cosmochimica Acta, 66: 2701-2717.
  • 32. Geroch, S., Jednorowska, A., Książkiewicz, M. & Liszkowa, J. 1967. Stratigraphy based upon microlauna in the Western Polish Carpathians. Instytut Geologiczny, Biuletyn, 211: 185-282.
  • 33. Gersonde, R. & Wefer, G., 1987. Sedimentation of biogenic siliceous particles in Antarctic waters from the Atlantic sector. Marine Micropaleontology, 11: 311-332.
  • 34. Gimenez-Montsant, J., Calvet, F. & Tucker, M. E., 1999. Siltca diagenesis in Eocene shallow-water platform carbonates, southern Pyrenees. Sedimentology, 46: 969-984.
  • 35. Hammes, U., 1995. Initiation and development of small-scale sponge mud-mounds, Late Jurassic, Southern Franconian Alb, Germany. In: Monty, C. L. V., Bosence, D. W. J., Bridges, P. H. & Pratt, B. R. (eds), Carbonate Mud-Mounds: Their Origin and Evolution. International Associations of Sedimentologists Special Publications, 23: 335-357.
  • 36. Hartman, W. D., 1979. A new sclerosponge from the Bahamas and its retationship to Mesozoic stromatoporoids. In: Lévi, C. & Boury-Esnault, N. (eds), Biologie des Spongiaires - Sponge Biology. Colloques Internationaux du Cenire National de la Recherche Scientifique, 291: 467-474.
  • 37. Hartman, W .D., Wendt, J .W. & Wiedenmayer, F., 1980. Living and Fossil Sponges: Notes for a Short Course. University of Miami, Miami, 274 pp.
  • 38. Heaney, P. J., 1993. A proposed mechanism for the growth of chalcedony. Contributions to Mineralogy and Petrology, 115, 66-74.
  • 39. Hesse, R., 1989. Silica diagenesis: origin of inorganic and replacement cherts. Earth-Science, Reviews, 26: 253-284.
  • 40. Hurd, D. C., 1973. Interactions of biogenic opal, sediment and seawater in the central equatorial Pacific. Geochimica et Cosmochimica Acta, 37: 2257-2282.
  • 41. Hurd, D. C., Pankratz, H. S., Asper, V., Fugate, J. & Morrow, H., 1981. Changes in the phystcal and chemtcal properties of biogenic siltca from the central equatorial Pacific: Part III. Specific pore volume, mean pore size, and skeletal ultrastructure of acid-cleaned samples. American Journal of Science, 281: 833-895.
  • 42. Kaplan, I. R., Emery, K. O. & Rittenberg, S. C., 1963. The distribution and isotopic abundance of sulphur in recent marine sediments off southern California. Geochimica et Cosmochimica Acta, 27: 297-331.
  • 43. Kauffman, E. G., Herm, D., Johnson, C. C., Harries, P. & Efling, R. H., 2000. The ecology of Cenomanian lithistid sponge frameworks, Regensburg area, Germany. Lethaia, 33: 214-235.
  • 44. Keene, J. B., 1975. Cherts and porcellanites from the north Pacific, DSDP LEG 32. In: Larson, R. L. & Moberly, R. et al. (eds), Initial Reports of the Deep Sea Drilling Project, 32: 429-507.
  • 45. Knauth, L. P., 1994. Petrogenesis of chert. Reviews in Mineralogy, 29: 233-258.
  • 46. Knauth, P. L. & Epstein, S., 1976. Hydrogen and oxygen isotope ratios in nodutar and bedded cherts. Geochemica et Cosmochemica Acta, 40: 1095-1108.
  • 47. Kohn, M. J., Riciputi, L. R., Stakes, D. & Orange, D. L., 1998. Sulfur isotope variability in biogenic pyrite: Reflections of heterogeneous bacterial colonization? American Mineralogist, 83: 1454-1468.
  • 48. Koszarski, L. & Nowak, W., 1960. Comments to age of the Lgota Beds. Kwartalnik Geologiczny, 4: 468-483. [In Poltsh, with English summary.]
  • 49. Koszarski, L. & Slączka, A., 1973. Outer (flysch) Carpathians. Lower Cretaceous. In: Pożaryski, W. (ed.), Geology of Poland. Instytut Geologiczny, Warszawa, pp. 492-495.
  • 50. Książkiewicz, M., 1951. Objaśnienia do arkusza Wadowice. Szczegółowa Mapa Geologiczna Polski, 1:50 000. Państwowy Instytut Geologiczny, Warszawa, 283 pp. [In Polish.]
  • 51. Książkiewicz, M., 1956. Geology of the Northern Carpathians. Geologische Rundschau, 45: 396-411.
  • 52. Książkiewicz, M. (ed.), 1962. Geological Atlas of Poland; Stratigraphic and Facial Problems, vol. 13. Cretaceous and Older Paleogene in the Polish Outer Carpathians. Instytut Geologiczny, Wydawnictwa Geologiczne, Warszawa, 20 maps, 20 pp. explanatory notes.
  • 53. Land, L. S., 1976. Early dissolution of sponge spicules from reef sediments, North Jamaica. Journal of Sedimentary Petrology, 46: 967-969.
  • 54. Lüttge, A. & Conrad, P. G., 2004. Direct observation of microbial inhibition of calcite dissolution. Applied and Environmental Microbiology, 70: 1627-1632.
  • 55. Madsen, H. B. & Stemmerik, L., 2010. Diagenesis of flint and porcellanite in the Maastrichtian chalk at Stevns Klint, Denmark. Journal of Sedimentary Research, 80: 578-588.
  • 56. Maldonado, M., Carmona, M. C., Velásquez, Z., Puig, M. A., Cruzado, A., López, A. & Young, C. M., 2005. Siticeous sponges as a Siltcon sink: An overtooked aspect of benthopelagic coupling in the marine Silicon cycle. Limnology and Oceanography, 50: 799-809.
  • 57. Mišik, M., 1966. Microfacies of the Mesozoic and Tertiary Limestones of the West Carpathians. Vydavatel’stvo Slovenskej Akademie Vied, Bratislava, 269 pp.
  • 58. Mišik, M., 1993. Carbonate rhombohedra in nodular cherts: Mesozoic of the West Carpathians. Journal of Sedimentary Research, 63: 275-281.
  • 59. Mizutani, S., 1970. Silica minerals in the early stage of diagenesis. Sedimentology, 15: 419-436.
  • 60. Morley, J. J., Shemesh, A. & Abelmann, A., 2013. Laboratory analysis of dissolution effects on Southern Ocean polycystine Radiolaria. Marine Micropaleontology, 110: 83-86.
  • 61. Nelson, D. M., Tréguer, P., Brzezinski, M. A., Leynaert, A. & Quéguiner, B., 1995. Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data and relationship with biogenic sedimentation. Global Biogeochemical Cycles, 9: 359-372.
  • 62. Neuweiler, F., Gautret, P., Thiel, V., Lange, R., Michaelis, W. & Reitner, J., 1999. Petrology of Lower Cretaceous carbonate mud mounds (Albian, N Spain): insights into organomineralic deposits of the geological record. Sedimentology, 46: 837-859.
  • 63. Okoński, S., Górny Z., Bąk M. & Bąk, K., 2014. Lithistid spicules in the sediments of the Turonian Variegated Shale in the Silesian Nappe, Polish Outer Carpathians. Geology, Geophysics & Environment, 40: 33-48.
  • 64. Olóriz, F., Reolid, M. & Rodriguez-Tovar, F. J., 2003. A Late Jurassic carbonate ramp colonized by sponges and benthic microbial communities (External Prebetic, southern Spain). Palaios, 18: 528-545.
  • 65. Oszczypko, N., 2004. The structural position and tecteno-sedimentary evolution of the Polish Outer Carpathians. Przegląd Geologiczny, 52: 780-791.
  • 66. Piper, D. J. W. & Deptuck, M., 1997. Fine-grained turbidites of the Amazon Fan: facies characterization and interpretation. In: Flood, R. D. et al. (eds), Proceedings of the Ocean Drilltng Program, Scientific Results, 155: 79-108.
  • 67. Pisera, A., 1997. Upper Jurassic siliceous sponges from the Swabian Alb: taxonomy and paleoecology. Palaeontologia Polonica, 57: 1-216.
  • 68. Pisera, A. & Lévi, C. 2002. ‘Lithistid’ Demospongiae. In: Hooper, J. N. A. & Van Soest, R. W. M. (eds), Systema Porifera: A Guide to Classification of Sponges. Kluwer Academic/P^ num Publisher, New York, pp. 299-301.
  • 69. Pratt, B., R., Bourque, P. A. & Gignac, H., 1986. Sponge-constructed stromatactis mud mounds, Süurian of Gaspe, Quebec; discussion and reply. Journal of Sedimentary Research, 56: 459-463.
  • 70. Reitner, J., 1993. Modern cryptic microbialite-metazoan facies from Lizard Istand (Great Barrier Reef, Australia) - formation and concepts. Facies, 29: 3-40.
  • 71. Reitner, J. & Keupp, H., 1991. The fossil record of the Haplosclerid excavating sponge Aka de Laubenfels. In: Reitner, J. & and Keupp, H. (eds), Fossil and Recent Sponges, Springer Verlag, Berlin, pp. 102-120.
  • 72. Reitner, J., Neuweiler, F. & Gautret, P., 1995. Modern and fossil automicrites: implications for mud-mound genesis. Facies, 32: 4-17.
  • 73. Riech, V. & von Rad, U., 1979. Silica diagenesis in the Atlantic Ocean: diagenetic potential and transformations. In: Talwani, M., Hay, W. & Ryan, W. B. F. (eds), Deep Drilling in the Atlantic Ocean: Continental Margins and Paleoenvironment. American Geophysical Union, Maurice Ewing Series, 3, pp. 315-340.
  • 74. Sujkowski, Z., 1933. Sur certains spongiolithes de la Tatra et des Karpates. Państwowy Instytut Geologiczny, Sprawozdania, 7: 712-733. [In Polish, with French summary.]
  • 75. Tréguer, P., Nelson, D. M., van Bennekom, A. J., DeMaster, D. J., Leynaert, A. & Quéguiner, B., 1995. The balance of silica in the world ocean: a re-estimate. Science, 268: 375-379.
  • 76. Tréguer, P. J. & De La Rocha, C. L., 2013. The World Ocean silica cycle. Annual Review ofMarine Science, 5: 477-501.
  • 77. Unrug, R., 1959. On the sedimentation of the Lgota beds. Rocznik Polskiego Towarzystwa Geologicznego, 29: 197-225. [In Polish, with English summary.]
  • 78. Unrug, R., 1977. Ancient deep-sea traction currents deposits in the Lgota beds (Albian) of the Carpathian Flysch. Rocznik Polskiego Towarzystwa Geologicznego, 47: 355-370.
  • 79. Van Cappellen, P. & Qui, L., 1997a. Biogenic silica dissolution in sediments of the Southern Ocean. II. Solubility. Deep-Sea Research II, 44: 1109-1128.
  • 80. Van Cappellen, P. & Qui, L., 1997b. Biogenic silica dissolution in sediments of the Southern Ocean. II. Kinetics. Deep-Sea Research II, 44: 1129-1140.
  • 81. Von Rad, U. & Rösch, H., 1972. Mineralogy and origin of clay minerals, silica and authigenic silicates in Leg 14 sediments. Reports of Deep Sea Drilling Project, 14: 727-751.
  • 82. Von Rad, U. & Rösch, H., 1974. Petrography and diagenesis of deep-sea cherts from the central Atlantic. In: Hsu, K. J. & Jenkyns H. C. (eds), Pelagic Sediments: On Land and Under the Sea. Blackwell Scientific Publications, Oxford, pp. 327-347.
  • 83. Warnke, K., 1995. Calcification processes of siliceous sponges in Viséan limestones (counties Sligo and Leitrim, Northwestern Ireland. Facies, 33: 215-228.
  • 84. Wheat, C. G. & McManus, J., 2005. The potential role of ridge- flank hydrothermal systems on oceanic germanium and silicon balances. Geochimica at Cosmochimica Acta, 69: 2021-2029.
  • 85. Wiedenmayer, F., 1980. Siliceous Sponges-development through time. In: Hartman, W. D., Wendt, J. W. & Wiedenmayer, F. (eds), Living and fossil sponges. Notes for a short course. Sedimenta, 8: 55-85.
  • 86. Williams, L. A. & Crerar, D. A., 1985. Silica diagenesis: II. General mechanisms. Journal of Sedimentary Petrology, 55: 312-321.
  • 87. Williams, L. A., Parks, G. A. & Crerar, D. A., 1985. Silica diagenesis: I. Solubility controls. Journal of Sedimentary Petrology, 55: 301-311.
  • 88. Wise, S. W. & de Weaver, F. M., 1974. Chertification of oceanic sediments. In: Hsu, K. J. & Jenkyns H. C. (eds), Pelagic Sediments: On Land and Under the Sea. Blackwell Scientific Publications, Oxford, pp. 301-326.
  • 89. Zijlstra, H. J. P., 1987. Early diagenetic silica precipitation, in relation to redox boundaries and bacterial metabolism in Late Cretaceous chalk of the Maastrichtian type locality: Geologie en Mijnbouw, 66: 343-355.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-069d7901-c4da-4beb-be2b-d884ff2c5d45
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.