PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Arduino based appliance monitoring system using SCT-013 current and ZMPT101B voltage sensors

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
System monitorowania poboru mocy oparty na Arduino za pomocą czujników prądu SCT-013 i napięcia ZMPT101B
Języki publikacji
EN
Abstrakty
EN
This paper presents the design and development of a device for use as an energy monitoring system of home electrical appliances. The device can measure and log the details of appliance consumption directly from a 13 amps power plug outlet where the appliance is connected. Construction of the system is based on Arduino as main controller, SCT-013-000 current sensor, ZMPT101B voltage sensor, real-time clock, SD card and other passive electronic components. Performance and efficiency of the proposed system have been evaluated through an experiment employing several commonly used appliances such as electric iron, electric kettle, refrigerator and washing machine. From the comparison of logged appliance data consumption with the reading of a commercial energy meter, the overall results show a good agreement of voltage, current and power values with accuracy of up to 95%. The proposed device can be used in home energy management system for monitoring closely the appliance activities.
PL
W artykule przedstawiono projekt urządzenia do zastosowania jako system monitoringu energii domowych urządzeń elektrycznych. Urządzenie może mierzyć i rejestrować szczegóły zużycia przez urządzenie bezpośrednio z 13-amperowego gniazdka elektrycznego, do którego urządzenie jest podłączone. Konstrukcja systemu oparta jest na Arduino jako kontrolerze głównym, czujniku prądu SCT-013-000, czujniku napięcia ZMPT101B, zegarze czasu rzeczywistego, karcie SD oraz innych pasywnych elementach elektronicznych. Wydajność proponowanego systemu oceniono w eksperymencie z użyciem kilku powszechnie używanych urządzeń, takich jak żelazko elektryczne, czajnik elektryczny, lodówka i pralka. Z porównania zużycia danych zarejestrowanych przez urządzenie z odczytem komercyjnego licznika energii, ogólne wyniki wykazują dobrą zgodność wartości napięcia, prądu i mocy z dokładnością do 95%. Proponowane urządzenie może być wykorzystane w domowym systemie zarządzania energią do ścisłego monitorowania pracy urządzenia.
Rocznik
Strony
89--94
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
autor
  • Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu Malaysia
  • Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu Malaysia
  • Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu Malaysia
Bibliografia
  • [1] Ministry of Science, Technology and Innovation (MOSTI), "Sektor Tenaga," in INISIATIF MESTECC 2020. Malaysia: 2020, pp. 6-9.[Online]. Available: https://inisiatif.mosti.gov.my/Buku.pdf
  • [2] J. G. Josué, J. M. Pina, and M. V. Neves, ‘Home electric energy monitoring system: Design and prototyping’, IFIP Advances in Information and Communication. Technology, vol. 349, pp. 437–444, 2011
  • [3] R.Govindarajan, S.Meikandasivam and D. Vijayakumar, ‘Low cost Arduino based smart energy monitoring system using Internet of Things’, Journal of Engineering and Applied Sciences, vol. 14, no. 1, pp. 170–177, 2019
  • [4] M. Abo-Zahhad, S. M. Ahmed, M. Farrag, M. F. A. Ahmed, and A. Ali, ‘Design and implementation of building energy monitoring and management system based on wireless sensor networks’, Proceeding - 2015 10th International Conference on Computer Engineering and Systems ICCES 2015, pp. 230– 233, 2015
  • [5] N. M. Yoeseph, M. A. Safi’Ie, and F. A. Purnomo, ‘Smart Energy Meter based on Arduino and Internet of Things’, IOP Conference Series: Materials Science and Engineering, vol. 578, no. 1, 2019
  • [6] B. Najafi, S. Moaveninejad, and F. Rinaldi, "Data Analytics for Energy Disaggregation: Methods and Applications," Big Data Application Power Systems, pp. 377–408, Jan. 2018. doi: 10.1016/B978-0-12-811968-6.00017-6
  • [7] F. D. A. Gonzalo, J. A. Ferrandiz, D. F. Escudero, and J. A. Hernandez, "Non-intrusive electric power monitoring system in multipurpose educational buildings," International Journal of Power Electronics and Drive System, vol. 9, no. 3, pp. 51–62, 2019. doi: 10.11591/ijpeds.v10.i3.1297-1307
  • [8] K. C. Okafor, G. C. Ononiwu, U. Precious, and A. C. Godis, ‘Development of Arduino Based IoT Metering System for On - Demand Energy Monitoring’, International Journal of Mechatronics, Electrical and Computer Technology, vol. 7, no. 23, pp. 3208–3224, 2017
  • [9] I. Abubakar, S. N. Khalid, M. W. Mustafa, M. Mustapha, and H. Shareef, ‘Residential Energy Consumption Management Using Arduino Microcontroller’, Advanced Science Letters, vol. 24, no. 6, pp. 3887–3893, 2018
  • [10] Najmeddine, H, Drissi, KE "Advanced monitoring with a smart meter”, PRZEGLAD ELEKTROTECHNICZNY, vol. 86, no. 12, pp.243-246
  • [11] K. Khalid, A. Mohamed, R. Mohamed, and H. Shareef, "Performance comparison of artificial intelligence techniques for non-intrusive electrical load monitoring," Bulletin of Electrical Engineering and Informatics, vol. 7, no. 2, pp. 143–152, May 2018. doi: 10.11591/eei.v7i2.1190
  • [12] I. Abubakar, S. N. Khalid, M. W. Mustafa, H. Shareef, and M. Mustapha, "Application of load monitoring in appliances’ energy management – A review," Renewable and Sustainable Energy Reviews, vol. 67, pp. 235–245, 2017. doi: 10.1016/j.rser.2016.09.064
  • [13] S. S. Hosseini, K. Agbossou, S. Kelouwani, and A. Cardenas, "Non-intrusive load monitoring through home energy management systems: A comprehensive review," Renewable and Sustainable Energy Reviews, vol. 79, pp. 1266–1274, 2017. doi: 10.1016/j.rser.2017.05.096
  • [14] I. Abubakar, S. N. Khalid, M. W. Mustafa, M. Mustapha, and H. Shareef, ‘Development of Arduino Microcontroller Based Non- Intrusive Appliances Monitoring System Using Artificial Neural Network’, Advanced Science Letters, vol. 24, no. 6, pp. 4483– 4488, 2018
  • [15] S. Makonin, B. Ellert, I. V. Bajić, and F. Popowich, "Electricity, water, and natural gas consumption of a residential house in Canada from 2012 to 2014," Scientific Data, vol. 3, pp. 1–12, 2016. doi: 10.1038/sdata.2016.37
  • [16] H. Rashid, P. Singh, and A. Singh, "Data descriptor: I-BLEND, a campus-scale commercial and residential buildings electrical energy dataset," Scientific Data, vol. 6, pp. 1–12, 2019. doi: 10.1038/sdata.2019.15
  • [17] S. Welikala, N. Thelasingha, M. Akram, P. B. Ekanayake, R. I. Godaliyadda, and J. B. Ekanayake, "Implementation of a robust real-time non-intrusive load monitoring solution," Applied Energy, vol. 238, pp. 1519–1529, 2019. doi: 10.1016/j.apenergy.2019.01.167
  • [18] M. Shamshiri, C. K. Gan, K. A. Baharin, and M. A. M. Azman, "IoT-based electricity energy monitoring system at Universiti Teknikal Malaysia Melaka," Bulletin of Electrical Engineering and Informatics, vol. 8, no. 2, pp. 683–689, 2019. doi: 10.1016/j.apenergy.2019.01.167
  • [19] M. S. Ahmed, A. Mohamed, T. Khatib, H. Shareef, R. Z. Homod, and J. A. Ali, "Real time optimal schedule controller for home energy management system using new binary backtracking search algorithm," Energy and Buildings., vol. 138, pp. 215–227, 2017. doi: 10.1016/j.enbuild.2016.12.052
  • [20] Marcinek, K, „Design and Implementation of ZigBee Solution for Last-Mile Problem in Automatic Meter Reading”,
  • [21] L. N. Phangbertha, A. Fitri, I. Purnamasari, and Y. Muliono, "Smart socket for electricity control in home environment," in International Conference on Computer Science and Computational Intelligence 2019 (ICCSCI), 12-13 September 2019, Procedia Computer Science, vol. 157, pp. 465–472, 2019. doi: 10.1016/j.procs.2019.09.002
  • [22] I. A. Bakar, "Non-intrusive Load Management System for Residential Loads Using Artificial Neural Network Based Arduino Microcontroller," Ph.D. thesis, Dept. Electrical Engineering, Universiti Teknologi Malaysia, Johor, Malaysia, 2018.[Online]. Available: https://pdfs.semanticscholar.org/6e54/0f180cb427d4df882e4e4 d691ea6c608a990.pdf?_ga=2.71187728.1056151605.1598979 018-1831659329.1595480472
  • [23] Arduino Guide. "analogReference()." ARDUINO. https://www.arduino.cc/reference/en/language/functions/analog -io/analogreference/ (Accessed Sep. 01, 2020)
  • [24] I. Abubakar, S. N. Khalid, M. W. Mustafa, H. Shareef, and M. Mustapha, ‘Calibration of ZMPT101B voltage sensor module using polynomial regression for accurate load monitoring’, ARPN Journal of Engineering and Applied Sciences, vol. 12, no. 4, pp. 1076–1084, 2017
  • [25] Tenaga Nasional Berhad (TNB), "Planning and design criteria," in Electricity Supply Application Handbook, 3rd ed., Malaysia: Distribution Division TNB, Nov. 2011, pp. 24. [Online]. Available: http://ocw.ump.edu.my/pluginfile.php/12731/mod_resource/cont ent/1/TNB%20Handbook.pdf
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-06953771-eaf3-4bd8-a71b-5274abd8c4a3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.