PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Jurassic–Cretaceous transition in the High-Tatric succession (Giewont Unit, Western Tatra Mts, Poland): integrated stratigraphy and microfacies

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Herein are presented the results of detailed bio - (calcareous dinocysts, calpionellids, foraminifers, saccocomids) and chemostratigraphic (δ13C) studies combined with high-resolution microfacies, rock magnetic and gamma-ray spectrometry (GRS) investigations performed on the upper Kimmeridgian-upper Valanginian carbonates of the Giewont succession (Tatricum, Giewont and Mały Giewont sections, Western Tatra Mountains, Poland). The interval studied covers the contact between the Raptawicka Turnia Limestone (RTL) Fm. and the Wysoka Turnia Limestone (WTL) Fm. Their sedimentary sequence is composed of micrites, pseudonodular limestones, cyanoid packstones, lithoclastic packstone and encrinites. A precise correlation with the previously published Mały Giewont section is ensured by biostratigraphy, rock magnetic and GRS logs. The methodology adopted has enabled the recognition of two stratigraphic discontinuities, approximated here as corresponding to the latest Tithonian-early (late?) Berriasian and the early Valanginian. The hiatuses are evidenced by biostratigraphic data and the microfacies succession as well as by perturbations in isotopic compositions and rock magnetic logs; they are thought to result from a conjunction of tectonic activity and eustatic changes. A modified lithostratigraphic scheme for the Giewont and the Osobita High-Tatric successions is proposed. The top of the RTL Fm. falls in the upper Tithonian, where cyanoid packstones disappear. At the base of the WTL Fm. a new Giewont Member is defined as consisting of a basal lithoclastic packstone and following encrinites.
Rocznik
Strony
107--135
Opis fizyczny
Bibliogr. 93 poz., rys.
Twórcy
  • Faculty of Geology, University of Warsaw, ul. Żwirki i Wigury 93, 02-089 Warsaw, Poland
  • Institute of Geological Sciences, Polish Academy of Sciences, Warszawa Research Centre, ul. Twarda 51/55, 00-818 Warsaw, Poland
  • Polish Geological Institute-National Research Institute, ul. Rakowiecka 4, 00-975 Warsaw, Poland
  • Polish Geological Institute-National Research Institute, ul. Rakowiecka 4, 00-975 Warsaw, Poland
Bibliografia
  • 1. Barchetta, A. 2015. The Tethys (Cismon core) and Pacific (DSDP Site 463) Ocean record of OAE1a: a taxonomic and quantitative analyses of planktonic foraminifera and their biological response across the Selli Level equivalent. Ph.D. Thesis, Università Degli Studi di Milano, DOI: http://dx.doi.org/10.13130/barchetta-alessia_phd2015-02-11
  • 2. Bąk, K. and Bąk, M. 2013. Foraminiferal and radiolarian biostratigraphy of the youngest (Late Albian through Late Cenomanian) sediments of the Tatra massif, Central Western Carpathians. Acta Geologica Polonica, 63 (2), 223–237.
  • 3. Benzaggagh, M. 2021. Systematic revision and evolution of the Tithonian family Chitinoidellidae Trejo, 1975. Carnets de Geologie, 21 (2), 27–53.
  • 4. Benzaggagh, M., Homberg, C., Schnyder, J. and Abdesselam-Mahdaoui, S.B. 2015a. Description et biozonation des sections de crinoïdes saccocomidés du Jurassique supérieur (Oxfordien–Tithonien) du domaine téthysien occidental. Annales de Paléontologie, 101 (2), 95–117. [In French with English abstract]
  • 5. Benzaggagh, M., Homberg, C., Schnyder, J., Razgallah, S. and Hssaida, T. 2015b. Intérêt des kystes de dinoflagellés calcaires et du biomicrofaciès pélagique dans la datation des terrains du sommet du Jurassique et de la base du Berriasien dans le domaine téthysien occidental. Annales de Paléontologie, 101 (4), 251–263. [In French with English abstract]
  • 6. Borowska, U. 2015. Stratigraphy of the Lower Tithonian-Lower Aptian limestones of the Niedźwiedź crag from the High-Tatric allochthon, Polish Western Tatra Mountains (in Polish with English summary). Przegląd Geologiczny, 63, 164–171.
  • 7. Bureau Veritas Minerals Schedule of Service & Fees 2020. http://acmelab.com/wp-content/uploads/2020/01/BV_Fees-Schedule-2020_CAD_v2_08Jan2020.pdf
  • 8. Casellato, C.E. and Erba, E. 2021. Reliability of calcareous nannofossil events in the Tithonian–early Berriasian time interval: Implications for a revised high resolution zonation. Cretaceous Research, 117, 104611.
  • 9. Channell, J.E.T., Casellato, C.E., Muttoni, G. and Erba, E. 2010. Magnetostratigraphy, nannofossil stratigraphy and apparent polar wander for Adria-Africa in the Jurassic-Cretaceous boundary interval. Palaeogeography, Palaeoclimatology, Palaeoecology, 293, 51–75.
  • 10. Coccioni, R., Silva, I.P., Marsili, A. and Verga, D. 2007. First radiation of Cretaceous planktonic foraminifera with radially elongate chambers at Angles (Southeastern France) and biostratigraphic implications. Revue de Micropaléontologie, 50 (3), 215–224.
  • 11. Colombie, C., Lécuyer, C. and Strasser, A. 2011. Carbon- and oxygen-isotope records of palaeoenvironmental and carbonate production changes in shallow-marine carbonates (Kimmeridgian, Swiss Jura). Geological Magazine, 148 (1), 133–153.
  • 12. Desai, D. and Banner, F.T. 1987. The evolution of Early Cretaceous Dorothiinae (Foraminiferida). Journal of Micropaleontology, 6 (2), 13–27.
  • 13. Erba, E. and Tremolada, F. 2004. Nannofossil carbonate fluxes during the Early Cretaceous: Phytoplankton response to nutrification episodes, armospheric CO2, and anoxia. Paleoceanography, 19, PA1008, DOI: 10.1029/2003PA000884.
  • 14. Föllmi, K.B. 2012. Early Cretaceous life, climate and anoxia. Cretaceous Research, 35, 230–257.
  • 15. Főzy, I., Janssen, N.M.M., Price, G.D., Knauer, J. and Pálfy, J. 2010. Integrated isotope and biostratigraphy of a Lower Cretaceous section from the Bakony Mountains (Transdanubian Range, Hungary): A new Tethyan record of the Weissert event. Cretaceous Research, 31, 525–545.
  • 16. Grabowski, J., Bakhmutov, V., Kdýr, Š., Krobicki, M., Pruner, P., Rehákova, D., Schnabl, P., Stoykova, K. and Wierzbowski, H. 2019. Integrated stratigraphy and palaeoenvironmental interpretation of the Upper Kimmeridgian to Lower Berriasian pelagic sequences of the Velykyi Kamianets section (Pieniny Klippen Belt, Ukraine). Palaeogeography, Palaeoclimatology, Palaeoecology, 532, 109216. DOI: 10.1016/j.palaeo.2019.05.038.
  • 17. Grabowski, J., Lakova, I., Petrova, S., Stoykova, K., Ivanova, D. Wójcik-Tabol, P., Sobień, K. and Schnabl, P. 2016. Paleomagnetism and integrated stratigraphy of the Upper Berriasian hemipelagic succession in the Barlya section Western Balkan, Bulgaria: Implications for lithogenic input and paleoredox variations. Palaeogeography, Palaeoclimatology, Palaeoecology, 461, 156–177.
  • 18. Grabowski, J., Michalík, J., Pszczółkowski, A. and Lintnerová, O. 2010. Magneto-, and isotope stratigraphy around the Jurassic/Cretaceous boundary in the Vysoká Unit (Malé Karpaty Mountains, Slovakia): correlations and tectonic implications. Geologica Carpathica, 61 (4), 309–326.
  • 19. Grabowski, J. and Pszczółkowski, A. 2006. Magneto- and biostratigraphy of the Tithonian–Berriasian pelagic sediments in the Tatra Mountains (Central Western Carpathians, Poland): sedimentary and rock magnetic changes at the Jurassic/Cretaceous boundary. Cretaceous Research, 27, 398–417.
  • 20. Grabowski, J., Schnyder, J., Sobień, K., Koptíková, L., Krzemiński, L., Pszczółkowski, A., Hejnar, J. and Schnabl, P. 2013. Magnetic susceptibility and spectral gamma logs in the Tithonian–Berriasian pelagic carbonates in the Tatra Mts (Western Carpathians, Poland): Palaeoenvironmental changes at the Jurassic/Cretaceous boundary. Cretaceous Research, 43, 1–17.
  • 21. Grabowski, J. and Sobień, K. 2015. Variation in clastic input in the Berriasian of the Lower Sub-Tatric (Krížna) succession in the Tatra Mountains (Central Western Carpathians, Poland): data from magnetic susceptibility and inorganic geochemistry). Annales Societatis Geologorum Poloniae, 85, 139–150.
  • 22. Gradstein, F.M., Kaminski, M.A. and Agterberg, F.P. 1999. Biostratigraphy and paleoceanography of the Cretaceous seaway between Norway and Greenland. Earth-Science Reviews, 46, 27–98.
  • 23. Gradstein, F.M., Waskowska, A. and Glinskikh, L. 2020. The first 40 milion years of planktonic foraminifera. Preprints, 2020, DOI:10.20944/202012.0319.v1.
  • 24. Haq, B.U. 2014. Cretaceous eustasy revisited. Global and Planetary Change, 113, 44–58.
  • 25. Haq, B.U. 2018. Jurassic sea-level variations: A reappraisal. GSA Today, 28 (1). DOI: 10.1130/GSATG359A.1.
  • 26. Hardenbol, J., Thierry, J., Harley, M.B., Jacquin, Th., de Graciansky, P.-C. and Vail, P.R. 1998. Mesozoic and Cenozoic sequence chronostratigraphic framework of European basins. Appendix. SEPM Special Publication, 160, 763–786.
  • 27. Hesselbo, S.P., Ogg, J.G. and Ruhl, M. 2020. The Jurassic Period. In: Gradstein, F.M., Ogg, J.G., Schmitz, M.D. and Ogg, G.M. (Eds), The Geologic Time Scale 2020, 955–1022. Elsevier; Amsterdam, London, Cambridge.
  • 28. Jach, R., Djerić, N., Goričan, Š. and Rehákova, D. 2014a. Integrated stratigraphy of the Middle–Upper Jurassic of the Krížna Nappe, Tatra Mountains. Annales Societatis Geologorum Poloniae, 84, 1–33.
  • 29. Jach, R. and Rehákova, D. 2019. Middle to Late Jurassic carbonate-biosiliceous sedimentation and palaeoenvironment in the Tethyan Fatricum domain, Krížna Nappe, Tatra Mts, Western Carpathians. Annales Societatis Geologorum Poloniae, 89, 1–46.
  • 30. Jach, R., Rychliński, T. and Uchman, A. (eds.). 2014b. Sedimentary Rocks of the Tatra Mountains, 278 pp. Wydawnictwa Tatrzańskiego Parku Narodowego; Zakopane.
  • 31. Jenkyns, H.C. 1972. Pelagic “oolites” from the Tethyan Jurassic. The Journal of Geology, 80, 21–33.
  • 32. Jenkyns, H.C. 1974. Origin of red nodular limestones (Ammonitico Rosso, Knollenkalke) in the Mediterranean Jurassic: a diagenetic model. Special Publications of the International Association of Sedimentologists, 1, 249–271.
  • 33. Jovane, L., Sprovieri, M., Florindo, F., Acton, G., Coccioni, R., Dall’Antonia, B. and Dinarès-Turell, J. 2007. Eocene-Oligocene paleoceanographic changes in the stratotype section, Massignano, Italy: Clues from rock magnetism and stable isotopes. Journal of Geophysical Research, 112, B11101, DOI: 10.1029/2007JB004963.
  • 34. Jurewicz, E. 2005. Geodynamic evolution of the Tatra Mts. And the Pieniny Klippen Belt (Western Carpathians): problems and comments. Acta Geologica Polonica, 55 (3), 295–338.
  • 35. Kaminski, M.A., Gradstein, F.M. and Geroch, S. 1992. Uppermost Jurassic to Lower Cretaceous deep-water benthic foraminiferal assemblages from site 765 on the Argo Abyssal Plain. Proceedings of the Ocean Drilling Program, Scientific Results, 123, 239–269.
  • 36. Kim, S.T., Mucci, A. and Taylor, B.E. 2007. Phosphoric acid fractionation factors for calcite and aragonite between 25 and 75°C: Revisited. Chemical Geology, 246, 135–146.
  • 37. Kollmann, H.A. 2002. Gastropods from the Lower Cretaceous of Vorarlberg, Austria. A systematic review. Annales des Naturhistorischen Museums in Wien. Serie A für Mineralogie und Petrographie, Geologie und Paläontologie, Anthropologie und Prähistorie, 103, 23–73.
  • 38. Kotański, Z. 1959. Z badań geologicznych wykonanych w Tatrach. Tom IV. Profile stratygraficzne serii wierchowej Tatr Polskich. Biuletyn Instytutu Geologicznego, 139, 1–160.
  • 39. Kotański, Z. 1961. Tectogenese et reconstitution de la paleogeographie de la zone Haut-Tatrique dans les Tatras. Acta Geologica Polonica, 11, 187–475. [In Polish with French summary]
  • 40. Kotański, Z. and Radwański, A. 1959. High-Tatric Tithonian in the Osobita Region, its fauna with Pygope diphya and products of volcanoes. Acta Geologica Polonica, 9, 519–538. [In Polish with English summary]
  • 41. Kotański, Z. and Radwański, A. 1960. Les crinoides planctoniques Saccocoma Agassiz dans le Malm et le Néocomien Haut-Tatrique des Tatras polonaises. Przegląd Geologiczny, 8, 477–479. [In Polish with French summary]
  • 42. Krajewski, M. and Olszewska, B. 2007. Foraminifera from the Late Jurassic and Early Cretaceous carbonate platform facies of the southern part of the Crimea Moutnains, Southern Ukraine. Annales Societatis Geologorum Poloniae, 77, 291–311.
  • 43. Krobicki, M. 1994. Stratigraphic significance and palaeoecology of the Tithonian–Berriasian brachiopods in the Pieniny Klippen Belt, Carpathians, Poland. Studia Geologica Polonica, 106, 89–156.
  • 44. Kumpan, T., Bábek, O., Kalvoda, J., Grygar, T.M. and Frýda, J. 2014. Sea-level and environmental changes around the Devonian–Carboniferous boudnary in the Namur–Dinant Basin (S Belgium, NE France): A multi-proxy stratigraphic analysis of carbonate ramp archives and its use in regional and interregional correlations. Sedimentary Geology, 311, 43–59.
  • 45. Lefeld, J. 1959. Tintinnidae z serii Kominów Tylkowych. Przegląd Geologiczny, 8, 358.
  • 46. Lefeld, J. 1968. Stratigraphy and palaeogeography of the High-Tatric Lower Cretaceous in the Tatra Mountains. Studia Geologica Polonica, 24, 1–115. [In Polish with English summary]
  • 47. Lefeld, J., Gaździcki, A., Iwanow, A., Krajewski, K. and Wójcik, K. 1985. Jurassic and Cretaceous lithostratigraphic units of the Tatra Mountains. Studia Geologica Polonica, 84, 7–93.
  • 48. Lefeld, J. and Radwański, A. 1960. Les Crinoides planctoniques Saccocoma Agassiz dans le Malm et le Néocomien haut-tatrique des Tatras Polonaises. Acta Geologica Polonica, 10, 593–618. [In Polish with French summary]
  • 49. Lodowski, D.G., Pszczółkowski, A., Szives, O., Főzy, I. and Grabowski, J. 2021. Jurassic–Cretaceous transition in the Transdanubian Range (Hungary): integrated stratigraphy and paleomagnetic study of the Hárskút and Lókút sections. Newsletters on Stratigraphy, DOI: 10.1127/nos/2021/0656.
  • 50. Łuczyński, P. 2021. Early and Middle Jurassic tectonically controlled deposition in the High-Tatric succession (Tatricum), Tatra Mountains, southern Poland: a review. Geological Quarterly, 65, DOI: 10.7306/gq.1583
  • 51. Madzin, J., Sýkora, M. and Soták, J. 2014. Stratigraphic position of alkaline volcanic rocks in the autochtonous cover of the High-Tatric Unit (Western Tatra Mts., Central Western Carpathians, Slovakia). Geological Quarterly, 58, 163–180.
  • 52. Masse, J.-P. and Uchman, A. 1997. New biostratigraphic data on the Early Cretaceous platform carbonates of the Tatra Mountains, Western Carpathians, Poland. Cretaceous Research, 18 (5), 713–729.
  • 53. Michalík, J., Grabowski, J., Lintnerová, O., Reháková, D., Kdýr, S. and Schnabl, P. 2021. Jurassic–Cretaceous boundary record in Carpathian sedimentary sequences. Cretaceous Research, 118, 104659, DOI: 10.1016/j.cretres.2020.104659.
  • 54. Michalík, J., Lintnerová, O., Reháková, D., Boorová, D. and Šimo, V. 2009. Early Cretaceous sedimentary evolution of a pelagic basin margin (the Manín Unit, central Western Carpathians, Slovakia). Cretaceous Research, 38, 68–79.
  • 55. Michalík, J., Reháková, D., Halásová, E. and Lintnerová, O. 2009. The Brodno section – a potential regional stratotype of the Jurassic/Cretaceous boundary (Western Carpathians). Geologica Carpathica, 60 (3), 213–232.
  • 56. Michalík, J., Rehákova, D. and Vašíček, Z. 1995. Early Cretaceous sedimentary changes in West-Carpathian area. Geologica Carpathica, 46 (5), 285–296.
  • 57. Michalík, J. and Vašíček, Z. 1987. Geology and stratigraphy of the Butkov Lower Cretaceous limestone deposits, Manín Unit, Middle Váh Valley (Western Slovakia). Mineralia slovaca, 19 (2), 115–134. [In Slovak with English summary]
  • 58. Michalík, J., Vašíček, Z., Skupien, P., Kratochvílova, L., Rehákova, D. and Halásová, E. 2005. Lower Cretaceous sequences of the Manín Unit (Butkov Quarry, Strážovské vrchy Mts, Western Carpathians) – integrated biostratigraphy and sequence stratigraphy. Slovak Geological Magazine, 11 (1), 29–35.
  • 59. Missoni, S. and Gawlick, H.-J. 2011. Evidence for Jurassic subduction from the Northern Calcareous Alps (Berchtesgaden; Austroalpine, Germany). International Journal of Earth Sciences, 100, 1605–1631.
  • 60. Moore, C.H. 2001. Carbonate Reservoirs: Porosity evolution and diagenesis in a sequence stratigraphic framework, 460 pp. Elsevier; Amsterdam.
  • 61. Morales, C., Gardin, S., Schnyder, J., Spangenberg, J., Arnaud-Vanneau, A., Arnaud, H., Adatte, T. and Föllmi, K.B. 2013. Berriasian and early Valanginian environmental change along a transect from the Jura Platform to the Vocontian Basin. Sedimentology, 60, 36–63.
  • 62. Morales, C., Spangenberg, J.E., Arnaud-Vanneau, A., Adatte, T. and Föllmi, K.B. 2016. Evolution of the northern Tethyan Helvetic Platform during the late Berriasian and early Valanginian. The Depositional Record, 2 (1), 47–73.
  • 63. Nemčok, J., Bezák, V., Biely, A., Gorek, A., Gross, P., Halouzka, R., Janák, M., Kahan, Š., Kotański, Z., Lefeld, J., Mello, J., Reichwalder, P., Raczkowski, W., Roniewicz, P., Ryka, W., Wieczorek, J. and Zelman, J. 1994. Geological map of the Tatra Mountains. MŽP SR, GÚDŠ; Bratislava.
  • 64. Ogg, J.G. 2020. Geomagnetic polarity time scale. In: Gradstein, F.M., Ogg, J.G., Schmitz, M.D. and Ogg, G.M. (Eds), The Geologic Time Scale 2020, 159–192. Elsevier; Amsterdam, London, Cambridge.
  • 65. Olszewska, B., Matyszkiewicz, J., Król, K. and Krajewski, M. 2012. Correlation of the Upper Jurassic–Cretaceous epicontinental sediments in southern Poland and southwestern Ukraine based on thin sections. Biuletyn Państwowego Instytutu Geologicznego, 453, 29–79.
  • 66. Olszewska, B., Szydło, A., Jugowiec-Nazarkiewicz, M. and Nescieruk, P. 2008. Integrated biostratigraphy of carbonate deposits of the Cieszyn Beds in the Polish Western Carpathians. Geologia, 34 (3), 33–59.
  • 67. Omaña, L., Gonzáles-Arreola, C. and Núñez-Useche, F. 2017. The Berriasian–Valanginian boundary interval based on calpionellids from the Taraises Formation, Cuencamé de Ceniceros, Durango, NW Mexico: Bisotratigraphic, paleoecologic and paleobiogeographic significance. Journal of South American Earth Sciences, 80, 589–600.
  • 68. Opdyke, N.D. and Channell, J.E.T. 1996. Magnetic Stratigraphy, 346 pp. Academic Press; San Diego.
  • 69. Pasquier, J.-B. and Strasser, A. 1997. Platform-to-basin correlation by high-resolution sequence stratigraphy and cyclostratigraphy (Berriasian, Switzerland and France). Sedimentology, 44, 1071–1092.
  • 70. Passendorfer, E. 1928. Kimeryd w Tatrach (Le Kimeridgien dans la Tatra). Sprawozdania PIG, 4, 491–499. [In Polish with French summary]
  • 71. Plašienka, D. 2019. Linkage of the Manín and Klape units with the Pieniny Klippen Belt and Central Western Carpathians: balancing the ambiguity. Geologica Carpathica, 70 (1), 35–61.
  • 72. Price, G.D., Főzy, I. and Pálfy, J. 2016. Carbon cycle history through the Jurassic–Cretaceous boundary: a new global δ13C stack. Palaeogeography, Palaeoclimatology, Palaeoecology, 451, 46–61.
  • 73. Pszczółkowski, A. 1996. Calpionellid stratigraphy of the Tithonian–Berriasian pelagic limestones in the Tatra Mts. (Western Carpathians). Studia Geologica Polonica, 109, 103–130.
  • 74. Pszczółkowski, A. 2003. Tithonian–Hauterivian events from the Lower Subtatric succession of the Tatra Mountains (Western Carpathians) in the framework of calpionellid stratigraphy (southern Poland). Przegląd Geologiczny, 51(11), 987–994. [In Polish with English summary]
  • 75. Pszczółkowski, A. 2018. Upper Jurassic bacteria from the Raptawicka Turnia Limestone Formation in the Mały Giewont area (Western Tatra Mountains, Poland), Geological Quarterly, 62 (4), 840–857.
  • 76. Pszczółkowski, A., Grabowski, J. and Wilamowski, A. 2016. Integrated biostratigraphy and carbon isotope stratigraphy of the Upper Jurassic shallow water carbonates of the High-Tatric Unit (Mały Giewont area, Western Tatra Mountains, Poland). Geological Quarterly, 60 (4), 893–918.
  • 77. Reboulet, S., Szives, O., Aguirre-Urreta, B., Barragán, R., Company, M., Frau, C., Kakabadze, M.V., Klein. J., Moreno-Bedmar, J.A., Lukeneder, A., Pictet, A., Ploch, I., Raisossadat, S.N., Vašíček, Z., Baraboshkin, J. and Mitta, V.V. 2018. Report on the 6th International Meeting of the IUGS Lower Cretaceous Ammonite Working Group, the Kilian Group (Vienna, Austria, 20th August 2017). Cretaceous Research, 91, 100–110.
  • 78. Reháková, D. 2000. Calcareous dinoflagellate and calpionellid bioevents versus sea-level fluctuations recorded in the West-Carpathian (Late Jurassic/Early Cretaceous) pelagic environments. Geologica Carpathica, 51 (4), 229–243.
  • 79. Reháková, D., Matyja, B., Wierzbowski, A., Schlögl, J., Krobicki, M. and Barski, M. 2011. Stratigraphy and microfacies of the Jurassic and lowermost Cretaceous of the Veliky Kamenets section (Pieniny Klippen Belt, Carpathians, Western Ukraine). Volumina Jurassica, IX, 61–104.
  • 80. Reháková, D. and Michalík, J. 1997. Evolution and distribution of calpionellids – the most characteristic constituents of Lower Cretaceous Tethyan microplankton. Cretaceous Research, 18, 493–504.
  • 81. Rider, M.H. 1999. The Geological Interpretation of Well Logs, 288 pp. Whittles Publishing Services; Southerland, Scotland.
  • 82. Rosenbaum, J. and Sheppard, S.M. 1986. An isotopic study of siderites, dolomites and ankerites at high temperatures. Geochimica et Cosmochimica Acta, 50, 1147–1150.
  • 83. Schmid, S.M., Bernoulli, D., Fügenschuh, B., Matenco, L., Schefer, S., Schuster, R., Tischler, M. and Ustaszewski, K. 2008. The Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units. Swiss Journal of Geosciences, 101, 139–183.
  • 84. Sprovieri, M., Coccioni, R., Lirer, F., Pelosi, N. and Lozar, F. 2006. Orbital tuning of a lower Cretaceous composite record (Maiolica Formation, central Italy). Paleoceanography, 21, PA421. DOI: 10.1029/2005PA001224.
  • 85. Stampfli, G.M. and Hochard, C. 2009. Plate tectonics of the Alpine realm. In: Murphy, J.B., Keppie, J.D. and Hynes, A.J. (Eds), Ancient Orogens and Modern Analogues. Geological Society, London, Special Publications, 327, 89–111.
  • 86. Staniszewska, A. and Ciborowski, T. 2000. Lower Cretaceous breccia from autochthonous High-Tatric succession in Western Tatra Mts. Przegląd Geologiczny, 48 (3), 246–250. [In Polish with English summary]
  • 87. Sutton, T.T. 2013. Vertical ecology of the pelagic ocean: classical patterns and new perspectives. Journal of Fish Biology, 83 (6), 1508–1527.
  • 88. Szederkényi, T., Haas, J., Nagymarosy, A. and Hámor, G. 2013. Geology and History of Evolution of the Tisza Mega-Unit. In: Haas, J. (Ed.), Geology of Hungary, 103–148. Regional Geology Reviews, Springer; Heidelberg, New York, Dordrecht, London.
  • 89. Török, Á. 1999. Petrophysical and sedimentological analyses of Siklós ornamental limestones, S-Hungary. Periodica Polytechnica Civil Engineering, 43 (2), 187–205.
  • 90. Vašíček, Z., Michalík, J. and Reháková, D. 1994. Early Cretaceous stratigraphy, paleogeography and life in Western Carpathians. Beringeria, 10, 5–168.
  • 91. Venuti, A., Florindo, F., Michel, E. and Hall, I.R. 2007. Magnetic proxy for deep (Pacific) western boundary current variability across the mid-Pleistocene climate transition. Earth and Planetary Science Letters, 259, 107–118.
  • 92. Weissert, H. and Channell, J.E.T. 1989. Tethyan carbonate carbon isotope stratigraphy across the Jurassic–Cretaceous boundary: an indicator of decelerated global carbon cycling? Paleoceanography, 4, 483–494.
  • 93. Zeiss, A. 2003. The Upper Jurassic of Europe: its subdivision and correlation. Geological Survey of Denmark and Greenland, 1, 75–114.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0690cab7-8d30-4c00-8aa3-96e0f21a5d7c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.