PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

New approach of model based detection of early stages of fuel injector failures

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the work was to develop a method of real time diagnosing electromagnetic fuel injectors using the observation of electric current parameters available in the engine control unit. Performing this task required finding a precise criterion for assessing the correct operation of an electromagnetic injector. For this purpose, a mathematical model describing the individual phases of the injector's operation was used, allowing the simulation of the occurrence of typical failures. On its basis, symptoms of particular failures were determined based on the observation of electric current parameters in the control circuit. Observation of voltage and current waveforms allows to locate both electrical and mechanical damages to the injectors and to assess the correctness of the power system components. The presented diagnostic method allows the detection of the described damages in the early stages of their development, which prevents damage to the catalytic converter and other engine systems (valves, piston rings or cylinder surfaces), i.e. damages resulting from an incorrect fuel mixture.
Rocznik
Strony
art. no. 6
Opis fizyczny
Bibliogr. 43 poz., rys., tab., wykr.
Twórcy
  • Warsaw University of Technology, Faculty of Faculty of Automotive and Construction Machinery Engineering, Narbutta 84, Warsaw, Poland
  • Warsaw University of Technology, Faculty of Faculty of Automotive and Construction Machinery Engineering, Narbutta 84, Warsaw, Poland
  • Warsaw University of Technology, Faculty of Faculty of Automotive and Construction Machinery Engineering, Narbutta 84, Warsaw, Poland
Bibliografia
  • 1. Allocca L, Siano D, Montanaro A, Panza MA. Imaging and Vibro-Acoustic Diagnostic Techniques Comparison for a GDI Fuel Injector. SAE International, Warrendale PA 2019, https://doi.org/10.4271/2019-24-0058.
  • 2. Bogusz W, Grabarczyk J, Krok Fraanciszek. Podstawy Fizyki. Oficyna Wydawnicza Politechniki Warszawskiej 2016. ISBN: 978-83-7814-511-0.
  • 3. Bor M, Borowczyk T, Karpiuk W, Smolec R. Determination of the response time of new generation electromagnetic injectors as a function of fuel pressure using the internal photoelectric effect. International Interdisciplinary PhD Workshop 2018; 335-339, https://doi.org/10.1109/IIPHDW.2018.8388385.
  • 4. Bozhkov S, Milenov I, Slivarov O, Staneva G, Bozhkov P. Researching the waveforms of the automobile electromagnetic actuators. Facta Universitatis, Series: Automatic Control and Robotics 1 2016 (1–7).
  • 5. Cammalleri M, Pipitone E, Beccari S, Genchi GA. Mathematical model for the prediction of the injected mass diagram of a S.I. engine gas injector. Journal of Mechanical Science and Technology 2013 (27), https://doi.org/DO10.1007/s12206-013-0848-6.
  • 6. Dziubiński M, Adamiec M, Siemionem E, Drozd A. Experimental tests of the ignition-injection system. IOP Conference Series Materials Science and Engineering 2018; 421(2):022005, https://doi.org/10.1088/1757-899X/421/2/022005.
  • 7. Ferdowsi H, Cai J, Jagannathan S. Actuator and Sensor Fault Detection and Failure Prediction for Systems with Multi-dimensional Nonlinear Partial Differential Equations. International Journal of Control Automation and Systems 2022; 20(3):789-802, https://doi.org/10.1007/s12555-019-0622-3.
  • 8. Figlus T, Konieczny Ł, Burdzik R, Czech P. The effect of damage to the fuel injector on changes of the vibroactivity of the diesel engine during its starting. JVE International LTD. Vibroengineering Procedia 2015; 6: 180-184.
  • 9. Gawlica T, Samenfink W, Schünemann E, Koch T. Model-based optimization of multi-hole injector spray targeting for gasoline direct injection. Tagung Einspritzung und Kraftstoffe, Springer Fachmedien 2019; 271–289, https://doi.org/10.1007/978-3-658-23181-1_14.
  • 10. Gritsenko A, Shepelev V, Zadorozhnaya E, Shubenkova K. Test diagnostics of engine systems in passenger cars FME Transactions 2020; 48: 46–52, https://doi.org/10.5937/fmet2001046G.
  • 11. Hung NB, Lim OT. A simulation and experimental study on the operating characteristics of a solenoid gas injector. Advances in Mechanical Engineering 2019;11, https://doi.org/10.1177/1687814018817421.
  • 12. Isermann R. Model-Based Fault Detection and Diagnosis - Status and Applications. IFAC Proceedings Volumes, 2004; 37. https://doi.org/10.1016/j.arcontrol.2004.12.002.
  • 13. Isermann R. Mechatronic systems: fundamentals. Springer, London 2005. ISBN: 978-1-84628-259-1.
  • 14. Isermann R. Advanced model-based diagnosis of internal combustion engines. Internationaler Motorenkongress Springer Fachmedien 2016; 413–432, https://doi.org/10.1007/978-3-658-12918-7_27.
  • 15. Ismail MAA, Wiedemann S, Bosch C, Stuckmann C. Design and Evaluation of Fault-Tolerant Electro-Mechanical Actuators for Flight Controls of Unmanned Aerial Vehicles Actuators 2021; 10: 175, https://doi.org/10.3390/act10080175.
  • 16. Jianmin L, Yupeng S, Xiaoming Z, Shiyong X, Lijun D. Fuel Injection System Fault Diagnosis Based on Cylinder Head Vibration Signal. Procedia Engineering, 2011; 16, https://doi.org/10.1016/j.proeng.2011.08.1075.
  • 17. Khameneian A, Wang X, Dice P, Naber JD, Shahbakhti M, Archer C, Moilanen P, Glugla C, Huberts GA. Real-time control-oriented discrete nonlinear model development for in-cylinder air charge, residual gas and temperature prediction of a Gasoline Direct Injection engine using cylinder, intake and exhaust pressures. Control Engineering Practice 2022; 119, https://doi.org/10.1016/j.conengprac.2021.104978.
  • 18. Komorska I, Wołczyński Z, Borczuk A. Model-based analysis of sensor faults in SI engine. Combustion Engines 2017, https://doi.org/10.19206/CE-140240.
  • 19. Leach F, Davy MH, Henry MP, Tombs M, Zhou F. A New Method for Measuring Fuel Flow in an Individual Injection in Real Time. SAE International Journal of Engines 2018; 11: 687–696, https://doi.org/10.4271/2018-01-0285.
  • 20. Li S, Nehl T, Gopalakrishnan S, Omekanda A, Namuduri C, Prasad RA. Dynamic Solenoid Model for Fuel Injectors. IEEE Energy Conversion Congress and Exposition 2018; 3206–3213, https://doi.org/10.1109/ECCE.2018.8558394.
  • 21. Lin TR, Tan ACC, Mathew J. Condition monitoring and diagnosis of injector faults in a diesel engine using in-cylinder pressure and acoustic emission techniques. Dyanmics for Sustainable Engineering, The HongKong Polytechnic University 2011.
  • 22. Mazzoleni M, Di Rito G, Previdi F. Fault Diagnosis and Condition Monitoring Approaches. Electro-Mechanical Actuators for the More Electric Aircraft, Springer International Publishing 2021; 87–117, https://doi.org/10.1007/978-3-030-61799-8_3.
  • 23. Mączak J, Jasiński M. Model-based detection of local defects in gears. Arch Appl Mech 2018; 8, https://doi.org/10.1007/s00419-017-1321-2.
  • 24. Merola SS, Tornatore C, Sementa P. Optical investigation of the fuel injector influence in a PFI spark ignition engine for two-wheel vehicles. Journal of Mechanical Science and Technology 2012; 26, https://doi.org/10.1007/s12206-011-0801-5.
  • 25. Moshou D, Natsis A, Kateris D, Pantazi XE, Kalimanis I, Gravalos I. Fault Detection of Fuel Injectors Based on One-Class Classifiers. Modern Mechanical Engineering 2013; 4, https://doi.org/10.4236/mme.2014.41003.
  • 26. Nogin S, Semião J, Monteiro JA. Non-intrusive IoT System for the Detection of Faults in Internal Combustion Engines. Springer International Publishing 2018; 338–358, https://doi.org/10.1007/978-3-319-70272-8_28.
  • 27. Papadopoulos PM, Lymperopoulos G, Polycarpou MM, Ioannou P. Distributed Diagnosis of Sensor and Actuator Faults in Air Handling Units in Multi-Zone Buildings: A Model-Based Approach. Energy and Buildings 2022; 256, https://doi.org/10.1016/j.enbuild.2021.111709.
  • 28. Pielech A, Skowron M, Mazanek A. Evaluation of the injectors operational wear process based on optical fuel spray analysis. eksploatacja i niezawodnosc – Maintenance and reliability 2018; 20 (1): 83–89, https://doi.org/10.17531/ein.2018.1.11.
  • 29. Putwattana S, Nivesrangsan P. The study of fuel injector operation using acoustic emission signals. 5th International Conference on Business and Industrial Research 2018, https://doi.org/10.1109/ICBIR.2018.8391208.
  • 30. Radkowski S. Use of vibroacustical signal in detecting early stages of failures. Eksploatacja i Niezawodność – Maintenance and Reliability 2007; 3: 11-18, https://doi.org//10.17531/ein.
  • 31. Rochussen J, Son J, Yeo J, Khosravi M, Kirchen P, McTaggart-Cowan G. Development of a Research-Oriented Cylinder Head with Modular Injector Mounting and Access for Multiple In-Cylinder Diagnostics. SAE International 2017, https://doi.org/10.4271/2017-24-0044.
  • 32. Sarwar A, Sankavaram C, Lu X. Diagnosis and Prognosis of Fuel Injectors based on Control Adaptation. Prognostics and Health Management Society 2017.
  • 33. Sebok M, Jurcik J, Gutten M, Kornciak D, Roj J, Zukowski P. Diagnostics and measurement of the gasoline engines injection system. Przegląd Elektrotechniczny 2015; 1, https://doi.org/10.15199/48.2015.08.20.
  • 34. Sebok M, Gutten M, Adamec J, Glowacz A, Roj J. Analysis of The Electronic Fuel Injector Operation. Communications - Scientific Letters of the University of Zilina 2018; 20: 32–36, https://doi.org/10.26552/com.C.2018.1.32-36.
  • 35. Taha Z, Rahim MA, Mamat R. Injection characteristics study of high-pressure direct injector for Compressed Natural Gas using experimental and analytical method. IOP Conference Series Materials Science and Engineering 2017; 257 (1): 012057, https://doi.org/10.1088/1757-899X/257/1/012057.
  • 36. Tan T, Park JS, Leteinturier P. Enhanced Injector Dead Time Compensation by Current Feedback. SAE International 2016, https://doi.org/10.4271/2016-01-0088.
  • 37. Wang L, Huang H, Lin Z, Meng F. Advanced gasoline engine misfire diagnostic method based on crankshaft speed multiple filtering. International Conference on Electric Information and Control Engineering 2011, https://doi.org/10.1109/ICEICE.2011.5776855.
  • 38. Wang P, Yu C. Distributed Actuator Fault Detection of LDTV Systems Using Relative Output Measurements. 40th Chinese Control Conference 2021; 4449–4454, https://doi.org/10.23919/CCC52363.2021.9550647.
  • 39. Więcławski K, Mączak J, Szczurowski K. Electric current as a source of information about control parameters of indirect injection fuel injector. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2020; 22: 449–454, https://doi.org/10.17531/ein.2020.3.7.
  • 40. Więcławski K, Mączak J, Szczurowski K. Electric Current Waveform of the Injector as a Source of Diagnostic Information. Sensors 2020; 20, https://doi.org/10.3390/s20154151.
  • 41. Więcławski K, Walczak D, Mączak J, Radkowski S, Szczurowski K, Zieliński Ł. Method of controling a fuel injector controller and a fuel injector controller. 2020; Patent, Espacenet: PL235122B1.
  • 42. Wu S, Xu M, Hung DLS, Li T, Pan H. Near-nozzle spray and spray collapse characteristics of spark-ignition direct-injection fuel injectors under sub-cooled and superheated conditions. Fuel 2016; 183: 322–334, https://doi.org/10.1016/j.fuel.2016.06.080.
  • 43. Yasukawa Y, Ishii E, Yoshimura K, Ogura K. Fuel Spray Analysis Near Nozzle Outlet of Fuel Injector During Valve Movement. Tagung Diesel- Und Benzindirekteinspritzung, Springer Fachmedien. 2017; 345–362, https://doi.org/10.1007/978-3-658-15327-4_17.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-06843cbc-7237-4fac-911f-da812d41752d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.