PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of optical short pulse generation using intensity modulation for LiDAR and free-space communications

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A simple optical pulse generation scheme for pulsed light detection and ranging (LiDAR) and free-space communications is proposed and experimentally and numerically demonstrated, in which continuous-wave light emitted by a distributed feedback-laser diode (DFB-LD) is modulated by a lithium-niobate Mach–Zehnder intensity modulator to generate optical short pulses, and an Er-doped fiber amplifier (EDFA) is used to boost transmitting light power. Possibilities of intensity modulators for high speed communications being used to generate optical short pulses for low speed pulsed LiDAR are investigated. The influences of bias voltage of intensity modulator and bit rate of modulation signal on the generated optical pulses are discussed. The pulse width obtained by using the return to zero signal with 33% duty cycle on bit rate of 2.5 and 5 Gbit/s is respectively 128.0 and 63.2 ps, and the corresponding nominal accuracy of pulsed LiDAR is respectively 19.2 and 9.5 mm, and low repetition frequency required by pulsed LiDAR is achieved by coding to high-speed modulation signal. The system performance for free-space communications and pulsed LiDAR is evaluated, respectively. We believe that the proposed scheme is suitable for the integrated system of pulsed LiDAR and free-space communications.
Czasopismo
Rocznik
Strony
97--107
Opis fizyczny
Bibliogr. 14 poz., rys.
Twórcy
autor
  • School of Physical Science and Technology, Southwest University, Chongqing 400715, P.R. China
autor
  • Institute of Electrical and Electronic Engineering, Chongqing University of Technology, Chongqing 400054, P.R. China
Bibliografia
  • [1] TSAI C.-M., LIU Y.-C., Anti-interference single-photon LiDAR using stochastic pulse position modulation, Optics Letters 45(2), 2020, pp. 439–442, DOI:10.1364/OL.384894.
  • [2] HATA A.Y., WOLF D.F., Feature detection for vehicle localization in urban environments using a multi-layer LIDAR, IEEE Transactions on Intelligent Transportation Systems 17(2), 2016, pp. 420–429, DOI:10.1109/TITS.2015.2477817.
  • [3] RAMASAMY S., SABATINI R., GARDI A., LIU J., LIDAR obstacle warning and avoidance system for unmanned aerial vehicle sense-and-avoid, Aerospace Science and Technology 55, 2016, pp. 344–358, DOI:10.1016/j.ast.2016.05.020.
  • [4] SCHWARZ B., LIDAR: Mapping the world in 3D, Nature Photonics 4(7), 2010, pp. 429–430, DOI:10.1038/nphoton.2010.148.
  • [5] SHI J.-W., GUO J.-I., KAGAMI M., SUNI P., ZIEMANN O., Photonic technologies for autonomous cars: feature introduction, Optics Express 27(5), 2019, pp. 7627–7628, DOI:10.1364/OE.27.007627.
  • [6] ZHANG Z., CAI Y., WANG J., WAN H., ZHANG L., Switchable dual-wavelength cylindrical vector beam generation from a passively mode-locked fiber laser based on carbon nanotubes, IEEE Journal of Selected Topics in Quantum Electronics 24(3), 2018, article 1100906, DOI:10.1109/JSTQE.2017.2761126.
  • [7] SALAM S., AL-MASOODI A.H.H., WANG P., HARUN S.W., Hybrid organic small molecules as a saturable absorber for passive Q-switching in erbium-doped fiber laser, OSA Continuum 3(2), 2020, pp. 177–185, DOI:10.1364/OSAC.379189.
  • [8] CHOU H.-F., CHIU Y.-J., BOWERS J.E., Standing-wave enhanced electroabsorption modulator for 40-GHz optical pulse generation, IEEE Photonics Technology Letters 15(2), 2003, pp. 215–217, DOI:10.1109/lpt.2002.806850.
  • [9] GORJAN M., PETKOVŠEK R., MARINČEK M., ČOPIČ M., High-power pulsed diode-pumped Er:ZBLAN fiber laser, Optics Letters 36(10), 2011, pp. 1923–1925, DOI:10.1364/OL.36.001923.
  • [10] CHENG H., ZHENG N., ZHANG X., QIN J., VANDE WETERING H., Interactive road situation analysis for driver assistance and safety warning systems: framework and algorithms, IEEE Transactions on Intelligent Transportation Systems 8(1), 2007, pp. 157–167, DOI:10.1109/TITS.2006.890073.
  • [11] THUNBERG J., LYAMIN N., SJÖBERG K., VINEL A., Vehicle-to-vehicle communications for platooning: safety analysis, IEEE Networking Letters 1(4), 2019, pp. 168–172, DOI:10.1109/LNET.2019.2929026.
  • [12] ZHANG Y., HE Y., YANG F., LUO Y., CHEN W., Three-dimensional imaging lidar system based on high speed pseudorandom modulation and photon counting, Chinese Optics Letters 14(11), 2016, article 111101, DOI:10.3788/COL201614.111101.
  • [13] POULTON C.V., BYRD M.J., RUSSO P., TIMURDOGAN E., KHANDAKER M., VERMEULEN D., WATTS M.R., Long-range LiDAR and free-space data communication with high-performance optical phased arrays, IEEE Journal of Selected Topics in Quantum Electronics 25(5), 2019, article 7700108, DOI:10.1109/JSTQE.2019.2908555.
  • [14] WILLIAMS J.A.R., BENNION I., ZHANG L., The compression of optical pulses using self-phase-modulation and linearly chirped Bragg-gratings in fibers, IEEE Photonics Technology Letters 7(5), 1995, pp. 491–493, DOI:10.1109/68.384520.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0683aaee-f2f3-448b-b7f2-3e56985e64d4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.