Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study presents a large-deflection mathematical analysis of a laminated glass plate that has suffered initial delamination. Three distinct interlayer types are taken into consideration in order to examine how the type of interlayer affects the behavior of delaminated glass plates. The plate is subjected to uniform pressure. The analysis is based on solving five nonlinear partial differential equations relating the lateral deflections and stresses to the applied load. The established solution approach is presented in a simple form suitable for analyzing various loads, geometries, material properties and boundary conditions. Two boundary conditions—fixed and simply supported edges—are taken into consideration for plates. It is established that interlayer type has a major effect in determining the delamination strength of laminated glass. Design engineers can use the current research findings to build laminated glass for structural applications.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
70--83
Opis fizyczny
Bibliogr. 55 poz., fig., tab.
Twórcy
autor
- Department of Civil Engineering, Adnan Menderes University, 09100 Aydin, Turkey
- Department of Technical Programs, Kyrgyz-Turkish Manas University, 720044 Bishkek, Kyrgyz Republic
Bibliografia
- 1. Hooper J.A., On the bending of architectural laminated glass. Int. J. Mech. Sci. 1973; 15: 309–323. https://doi.org/10.1016/0020-7403%2873%2990012-X.
- 2. Behr R.A., Minor J.E., Linden M.P., Vallabhan C.V.G., Laminated glass units under uniform lateral pressure. ASCE J. Struct. Eng. 1984; 111(5): 1037–1050.https://doi.org/10.1061/%28ASCE%290733-9445%281985%29111:5%281037%29.
- 3. Minor J.E., Developments in the design of architectural glazing systems. First Natl Struct. Eng. Conf., Australia, 1987; 77.
- 4. Behr R.A., Minor J.E., Linden M.P., Load duration and interlayer thickness effects on laminated glass. J. Struct. Eng. 1986; 112(6): 1441–1453. https://doi.org/10.1061/%28ASCE%290733-9445%281986%29112:6%281441%29.
- 5. Vallabhan C.V.G., Minor J.E., Nagalla S.R., Stresses in layered glass units and monolithic glass plates. J. Struct. Eng. 1987; 113: 36–43.https://doi.org/10.1061/%28ASCE%290733-9445%281987%29113:1%2836%29.
- 6. Vallabhan C.V.G., Das Y.C., Magdi M., Asik M.Z., Bailey J.R., Analysis of laminated glass units. J. Struct. Eng. 1993; 119: 1572–1585. https://doi.org/10.1061/%28ASCE%290733-9445%281993%29119:5%281572%29.
- 7. Behr R.A., Minor J.E., Norville S.H., Structural behavior of architectural laminated glass. J. Struct. Eng. 1993; 119: 202–222. https://doi.org/10.1061/%28ASCE%290733-9445%281993%29119:1%28202%29.
- 8. Minor J.E., Reznik P.L., Failure strengths of laminated glass. J. Struct. Eng. 1990; 116(4): 1030–1039. https://doi.org/10.1061/%28ASCE%290733-9445%281990%29116:4%281030%29.
- 9. Asik M.Z., Tezcan S., A mathematical model for the behavior of laminated glass beams. Comput. Struct. 2005; 83(21–22): 1742–1753.https://doi.org/10.1016/j.compstruc.2005.02.020.
- 10. Naumenko K., Eremeyev V.A., A layer-wise theory for laminated glass and photovoltaic panels. Compos. Struct. 2014; 112: 283–291. https://doi.org/10.1016/j.compstruct.2014.02.009.
- 11. Eisenträger J., Naumenko K., Altenbach H., Meenen J., A user-defined finite element for laminated glass panels and photovoltaic modules based on a layer-wise theory. Compos. Struct. 2015; 133: 265–277. https://doi.org/10.1016/j.compstruct.2015.07.049.
- 12. Focacci F., Foraboschi P., De Stefano M., Composite beam generally connected: analytical model. Compos. Struct. 2015; 133: 1237–1248. https://doi.org/10.1016/j.compstruct.2015.07.044.
- 13. Overend M., Butchart C., Lambert H., Prassas M., The mechanical performance of laminated hybrid-glass units. Compos. Struct. 2014; 110: 163–173.https://doi.org/10.1016/j.compstruct.2013.11.009.
- 14. Ma Q., Wu L., Huang D., An extended peridynamic model for dynamic fracture of laminated glass considering interfacial debonding. Compos. Struct. 2022; 290: 115552. https://doi.org/10.1016/j.compstruct.2022.115552.
- 15. Chen S., Zang M., Xua W., A three-dimensional computational framework for impact fracture analysis of automotive laminated glass. Comput. Methods Appl. Mech. Eng. 2015; 294: 72–99. https://doi.org/10.1016/j.cma.2015.06.005.
- 16. Xu X., Chen S., Wang D., Zang M., An efficient solid-shell cohesive zone model for impact fracture analysis of laminated glass. Theor. Appl. Fract. Mech. 2020; 108: 102660.https://doi.org/10.1016/j.tafmec.2020.102660.
- 17. Gao W., Xin L., Chen S., Bui T.Q., Yoshimura S., A cohesive zone based DE/FE coupling approach for interfacial debonding analysis of laminated glass. Theor. Appl. Fract. Mech. 2020; 108: 102668. https://doi.org/10.1016/j.tafmec.2020.102668.
- 18. Gao W., Wanga R., Chen S., Yin S., Zang M., An intrinsic cohesive zone approach for impact failure of windshield laminated glass subjected to a pedestrian headform. Int. J. Impact Eng. 2019; 129: 147–159.https://doi.org/10.1016/j.ijimpeng.2018.12.013.
- 19. Chen S., Zang M., Wang D., Yoshimura S., Yamada T., Numerical analysis of impact failure of automotive laminated glass: a review. Compos. B Eng. 2017; 122: 47–60.https://doi.org/10.1016/j.compositesb.2017.04.007.
- 20. Timmel M., Kolling S., Osterrieder P., Du Bois P.A., A finite element model for impact simulation with laminated glass. Int. J. Impact Eng. 2007; 34(8): 1465–1478. https://doi.org/10.1016/j.ijimpeng.2006.07.008.
- 21. Chen S., Zang M., Xu W., A three-dimensional computational framework for impact fracture analysis of automotive laminated glass. Comput. Methods Appl. Mech. Eng. 2015; 294: 72–99. https://doi.org/10.1016/j.cma.2015.06.005.
- 22. Wang X., Yang J., Liu Q., Zhao C., Experimental investigations into SGP laminated glass under low velocity impact. Int. J. Impact Eng. 2018; 122: 91–108. https://doi.org/10.1016/j.ijimpeng.2018.06.010.
- 23. Lenci S., Consolini L., Clementi F., On the experimental determination of dynamical properties of laminated glass. Ann. Solid Struct. Mech. 2015; 7: 27–43. [https://doi.org/10.1007/S12356-015-040-z](https://doi.org/10.1007/S12356-015-040-z).
- 24. Kozłowski M., Experimental and numerical assessment of structural behaviour of glass balustrade subjected to soft body impact. Compos. Struct. 2019; 229: 111380. https://doi.org/10.1016/j.compstruct.2019.111380.
- 25. Franz J., Investigation of the residual load-bearing behaviour of fractured glazing. TU Darmstadt; 2015.
- 26. Bedon C., Issues on the vibration analysis of in-service laminated glass structures: analytical, experimental and numerical investigations on delaminated beams. Appl. Sci. 2019; 9(18): 3928.https://doi.org/10.3390/app9183928.
- 27. Chen X., Chan A.H.C., Modelling impact fracture and fragmentation of laminated glass using the combined finite-discrete element method. Int. J. Impact Eng. 2018; 112: 15–29. https://doi.org/10.1016/j.ijimpeng.2017.10.007.
- 28. Lei Z., Rougier E., Knight E.E., Zang M., Munjiza A., Impact fracture and fragmentation of glass via the 3D combined finite-discrete element method. Appl. Sci. 2021; 11(6): 2484. [https://doi.org/10.3390/app11062484](https://doi.org/10.3390/app11062484).
- 29. Bermbach T., Teich M., Gebbeken N., Experimental investigation of energy dissipation mechanisms in laminated safety glass for combined blast-temperature loading scenarios. Glass Struct. Eng. 2016; 1(1): 331–350.https://doi.org/10.1007/s40940-016-0029-y.
- 30. Pelfrene J., Kuntsche J., Van Dam S., Van Paepegem W., Schneider J., Critical assessment of the post-breakage performance of blast loaded laminated glazing: experiments and simulations. Int. J. Impact Eng. 2016; 88: 61–71. https://doi.org/10.1016/j.ijimpeng.2015.09.008.
- 31. Dural E., Oyar F., Effect of delamination size, location and boundary conditions on the behavior of a laminated glass plate. Struct. 2023; 47: 121–133. https://doi.org/10.1016/j.istruc.2022.11.034.
- 32. Asik M.Z., Laminated glass plate: Revealing of nonlinear behavior. Comput. Struct. 2003; 81: 2659–2671. https://doi.org/10.1016/S0045-7949%2803%2900325-0.
- 33. Del Linz P., Hooper P.A., Arora H., Wang Y., Smith D., Blackman B.R., et al., Delamination properties of laminated glass windows subject to blast loading. Int. J. Impact Eng. 2017; 105: 39–53.https://doi.org/10.1016/j.ijimpeng.2016.05.015.
- 34. Dural E., Analysis of delaminated glass beams subjected to different boundary conditions. Compos. B. 2016; 101: 132–146. https://doi.org/10.1016/j.compositesb.2016.07.002)
- 35. Vedrtnam A., Experimental and simulation studies on delamination strength of laminated glass composites having polyvinyl butyral and ethyl vinyl acetate inter-layers of different critical thicknesses. Def. Technol. 2018; 14: 313–317.https://doi.org/10.1016/j.dt.2018.02.002.
- 36. Chen X., Rosendahl P.L., Chen S., Schneider J., On the delamination of polyvinyl butyral laminated glass: identification of fracture properties from numerical modelling. Construct. Build. Mater. 2021; 306: 124827. https://doi.org/10.1016/j.conbuildmat.2021.124827.
- 37. Davies P., Cadwallader R., Delamination Issues with Laminated Glass – Causes and Prevention; Glass Processing Days Finland, 2003.
- 38. Jaśkowiec J., Numerical modeling mechanical delamination in laminated glass by XFEM. Procedia Eng. 2015; 108: 293–300. https://doi.org/10.1016/j.proeng.2015.06.150.
- 39. Bedon C., Issues on the vibration analysis of in-service laminated glass structures: analytical, experimental and numerical investigations on delaminated beams. Appl. Sci. 2019; 9(18): 3928.https://doi.org/10.3390/app9183928.
- 40. Chen S., Chen Z., Chen X., Schneider J., Evaluation of the delamination performance of polyvinyl-butyral laminated glass by through-cracked tensile tests. Construct. Build. Mater. 2022; 341: 127914. https://doi.org/10.1016/j.conbuildmat.2022.127914.
- 41. Campione G., Orlando F., Fileccia X., Pauletta M., Bond characterization of monolithic and layered glass panels and ultrasonic tests to control glued surfaces. Eng. Struct. 2019; 198: 109545. https://doi.org/10.1016/j.engstruct.2019.109545.
- 42. Wang X., Yang J., Wang F., Liu Q., Xu H., Simulating the impact damage of laminated glass considering mixed mode delamination using FEM/DEM. Compos. Struct. 2018; 202: 1239–1252.https://doi.org/10.1016/j.compstruct.2018.05.127.
- 43. Poblete F.R., Mondal K., Ma Y., Dickey M.D., Genzer J., Zhu Y., Direct measurement of rate-dependent mode I and mode II traction-separation laws for cohesive zone modeling of laminated glass. Compos. Struct. 2022; 279: 114759. https://doi.org/10.1016/j.compstruct.2021.114759.
- 44. Shahriari M., Googarchi H.S., Prediction of vehicle impact speed based on the post-cracking behavior of automotive PVB laminated glass: analytical modeling and numerical cohesive zone modeling. Eng. Fract. Mech. 2020; 240: 107352. https://doi.org/10.1016/j.engfracmech.2020.107352.
- 45. Gao W., Liu X., Chen S., Bui T.Q., Yoshimura S., A cohesive zone based DE/FE coupling approach for interfacial debonding analysis of laminated glass. Theor. Appl. Fract. Mech. 2020; 108: 102668. https://doi.org/10.1016/j.tafmec.2020.102668.
- 46. Turon A., Dávila C.G., Camanho P.P., Costa J., An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models. Eng. Fract. Mech. 2007; 74(10): 1665–1682. https://doi.org/10.1016/j.engfracmech.2006.08.025.
- 47. Rahul-Kumar P., Jagota A., Bennison S.J., Saigal S., Interfacial failures in a compressive shear strength test of glass/polymer laminates. Int. J. Solid Struct. 2000; 37: 7281–7305. https://doi.org/10.1016/S0020-7683%2800%2900199-2.
- 48. Muralidhar S., Jagota A., Bennison S.J., Saigal S., Mechanical behaviour in tension of cracked glass bridged by an elastomeric ligament. Acta Mater. 2000; 48: 4577–4588. https://doi.org/10.1016/S1359-6454%2800%2900244-5.
- 49. Butchart C., Overend M., Delamination in fractured laminated glass, in: Engineered Transparency; International Conference at Glasstec, Dusseldorf, Germany, 2012.
- 50. Iwasaki R., Sato C., Lataillade J.L., Viot P., Experimental study on the interface fracture toughness of PVB (polyvinyl butyral)/glass at high strain rates. Int. J. Crashworthiness. 2007; 12: 293–298.https://doi.org/10.1080/13588260701442249.
- 51. Dural E., Vural S., Influence of boundary conditions on the behavior of laminated glass curved beam with delamination effect: An experimental and numerical investigation. Heliyon. 2024; 10: e24253.https://doi.org/10.1016/j.heliyon.2024.e24253.
- 52. Dural E., Experimental and numerical treatment of delamination in laminated glass plate structures. J. Reinf. Plast. Comp. 2016; 35(1): 56–70. https://doi.org/10.1016/j.compositesb.2013.11.004.
- 53. Bagaskara A., Rachmawati, Suwarno, Environmental effects on parameters of leakage current equivalent circuits of outdoor insulators. Emerg. Sci. J. 2024; 8(1): 310–325.http://dx.doi.org/10.28991/ESJ-2024-08-01-022.
- 54. Maraqa F., Yasin A.A., Al-Sahawneh E., Alomari J., Al-Adwan J., Al-Elwan A.A., Artificial neural network-based prediction of physical and mechanical properties of concrete containing glass aggregates. Civ. Eng. J. 2024; 10(5): 1627–1644.http://dx.doi.org/10.28991/CEJ-2024-010-05-018.
- 55. Al Khazaleh M., Kumar P.K., Qtiasha D., Alqatawna A., Experimental study on strength and performance of foamed concrete with glass powder and zeolite. Civ. Eng. J. 2024; 10(12): 3911–3925. http://dx.doi.org/10.28991/CEJ-2024-010-12-06.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0680f029-60da-4298-b16c-b6405255b12c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.