Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we introduce and study the class of demimetric mappings in CAT(0) spaces. We then propose a modified proximal point algorithm for approximating a common solution of a finite family of minimization problems and fixed point problems in CAT(0) spaces. Furthermore, we establish strong convergence of the proposed algorithm to a common solution of a finite family of minimization problems and fixed point problems for a finite family of demimetric mappings in complete CAT(0) spaces. A numerical example which illustrates the applicability of our proposed algorithm is also given. Our results improve and extend some recent results in the literature.
Wydawca
Czasopismo
Rocznik
Tom
Strony
277--294
Opis fizyczny
Bibliogr. 52 poz., wykr.
Twórcy
autor
- School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, South Africa
autor
- School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, South Africa
autor
- Department of Mathematics, University of Eswatini, Kwaluseni, Eswatini
autor
- School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, South Africa
Bibliografia
- [1] Izuchukwu C., Okeke C. C., Mewomo O. T., Systems of variational inequalities and multiple-set split equality fixed point problems for countable families of multi-valued type-one demicontractive-type mappings, Ukrainian Math. J. (Accepted, to appear, 2020)
- [2] Takahashi W., The split common fixed point problem and the shrinking projection method in Banach spaces, J. Convex Anal., 2017, 24(3), 1015-1028
- [3] Takahashi W., Strong convergence theorem for a finite family of demimetric mappings with variational inequality problems in a Hilbert space, Japan J. Indust. Appl. Math., 2017, 34(1), 41-57
- [4] Takahashi W., Wen C. F., Yao J. C., The shrinking projection method for a finite of family demimetric mappings with variational inequality problems in a Hilbert space, Fixed Point Theory, 2017, 19(1), 109-116
- [5] Komiya H., Takahashi W., Strong convergence theorem for an infinite family of demimetric mappings in a Hilbert space, J. Convex Anal., 2017, 24(4), 1357-1373
- [6] Mewomo O.T., Ogbuisi F.U., Convergence analysis of iterative method for multiple set split feasibility problems in certain Banach spaces, Quaest. Math., 2018, 41(1), 129-148
- [7] Ogbuisi F.U., Mewomo O.T., Iterative solution of split variational inclusion problem in real Banach space, Afr. Mat., 2017, 28(1-2), 295-309
- [8] Ogbuisi F.U., Mewomo O.T., Convergence analysis of common solution of certain nonlinear problems, Fixed Point Theory, 2018, 19(1), 335-358
- [9] Ogbuisi F.U., Mewomo O.T., On split generalized mixed equilibrium problems and fixed point problems with no prior knowledge of operator norm, J. Fixed Point Theory Appl., 2017, 19(3), 2109-2128
- [10] Okeke C.C., Mewomo O.T., On split equilibrim problem, variational inequality problem and fixed point problem for multivalued mappings, Ann. Acad. Rom. Sci. Ser. Math. Appl., 2017, 9(2), 255-280
- [11] Shehu Y., Mewomo O.T., Further investigation into split common fixed point problem for demicontractive operators, Acta Math, Sin. (Engl. Ser.), 2016, 32(11), 1357-1376
- [12] Shehu Y., Ogbuisi F.U., Mewomo O.T., Further investigation into approximation of a common solution of fixed point problems and split feasibility problems, Acta. Math. Sci. Ser. B, Engl. Ed., 2016, 36(3), 913-930
- [13] Kirk W. A., Geodesic geometry and fixed point theory, In: Seminar of Mathematical Analysis, (Univ. Sevilla Secr. Publ., Seville, 2003), 195-225
- [14] Dhompongsa S., Panyanak B., On ∆-convergence theorems in CAT(0) spaces, Comp. Math. Appl., 2008, 56(10), 2572-2579
- [15] Khan S. H., Abbas M., Strong ∆-convergence of some iterative schemes in CAT(0) spaces, Comp. Math. Appl., 2011, 61(1), 109-116
- [16] Chang S. S., Wang L., Joseph Lee H. W., Chan C. K., Yang L., Demiclosed principle and ∆-convergence theorems for total asymptotically nonexpansive mappings in CAT(0) spaces, Appl. Math. Comp., 2012, 219(5) 2611-2617
- [17] Berg I. D., Nikolaev I. G., Quasilinearization and curvature of Alexandrov spaces, Geom. Dedicata, 2008, 133(1), 195-218
- [18] Liu X., Chang S. S., Convergence theorems on total asymptotically demicontractive and hemicontractive mappings in CAT(0) spaces, J. Inequal. Appl., 2014, 436, 109-116
- [19] Jost J., Convex functionals and generalized harmonic maps into spaces of nonpositive curvature, Comment. Math. Helv., 1995, 70, 659-673
- [20] Martinet B., Regularisation d’ inequations varaiationnelles par approximations successives, Rev. Fr. Inform. Rec. Oper., 1970, 4(3), 154-158
- [21] Rockafellar R. T., Monotone operators and the proximal point algorithm, SIAM J. Control Optim., 1976, 14, 877-898
- [22] Kamimura S., Takahashi W., Approximating solutions of maximal monotone operators in Hilbert spaces, J. Approx. Theory, 2000, 106(2), 226-240
- [23] Boikanyo O. A., Morosanu G., A proximal point algorithm converging strongly for general errors, Optim. Lett., 2010, 4(4), 635-641
- [24] Marino G., Xu H. K., Convergence of generalized proximal point algorithm, Commun. Pure Appl., 2004, 3(4), 791-808
- [25] Xu H. K., A regularization for the proximal point algorithm, J. Glob. Optim., 2006, 36(1), 115-125
- [26] Yao Y., Noor M. A., On convergence criteria of generalized proximal point algorithm, J. Comput. Appl. Math., 2008, 217(1), 46-55
- [27] Brézis H., Lions P. L., Produits infinis de resolvantes, Israel J. Math., 1978, 29(4), 329-345
- [28] Saejung S., Yotkaew P., Approximation of zeros of inverse strongly monotone operators in Banach spaces, Nonlinear Anal., 2012, 75(2), 742-750
- [29] Bačák M., The proximal point algorithm in metric spaces, Israel J. Math., 2013, 194(2), 689-701
- [30] Cholamjiak P., Abdou A. N., Cho Y. Y., Proximal point algorithms involving fixed points of nonexpansive mappings in CAT(0) spaces, Fixed Point Theory Appl., 2015, 227, DOI 10.1186/s13663-015-0465-4
- [31] Lerkchaiyaphum K., Phuengrattana W., Iterative approaches to solving convex minimization problems and fixed point problem in complete CAT(0) Spaces, Numer. Algorithms, 2018, 77(3), 727-740
- [32] Bridson M. R., Haefliger A., Metric Spaces of Non-Positive Curvature, Fundamental Principle of Mathematical Sciences, Springer-Verlag, Berlin, Germany, 1999, 319
- [33] Brown K. S., Buildings, Springer, New York, NY, 1989
- [34] Jost J., Nonpositive Curvature: Geometric and Analytic Aspects, Lectures Math. ETH Zurich, Birkhauser, Basel, 1997
- [35] Dhompongsa S., Kirk W. A., Sims B., Fixed points of uniformly Lipschitzian mappings, Nonlinear Anal., 2006, 65(4), 762-772
- [36] Kirk. W. A, Panyanak B., A concept of convergence in geodesic spaces, Nonlinear Anal., 2008, 68(12), 3689-3696
- [37] Khatibzadeh H., Ranjbar S., Monotone operators and the proximal point algorithm in complete CAT(0) metric spaces, J. Aust. Math Soc., 2017, 103(1), 70-90
- [38] Ariza-Ruiz D., Leustean L., G. López-Acedo G., Firmly nonexpansive mappings in classes of geodesic spaces, Trans. Amer. Math. Soc., 2014, 366(8), 4299-4322
- [39] Ariza-Ruiz D., López-Acedo G., Nicolae A., The asymptotic behavior of the composition of firmly nonexpansive mappings, J. Optim. Theory Appl., 2015, 167(2), 409-429
- [40] Dehghan H., Rooin J., Metric projection and convergence theorems for nonexpansive mapping in Hadamard spaces, arXiv:1410.1137VI [math.FA]
- [41] Wangkeeree R., Preechasilp P., Viscosity approximation methods for nonexpansive mappings in CAT(0) Spaces, J. Inequal. Appl., 2013, 93
- [42] Chidume C. E., Bello A. U., Ndambomve P., Strong and ∆-convergence theorems for common fixed points of a finite family of multivalued demicontractive mappings in CAT(0) spaces, Abstr. Appl. Anal., 2014, Article ID 805168
- [43] Leuştean L., Nonexpansive iterations uniformly cover W-hyperbolic spaces, Nonlinear Analysis and Optimization 1: Nonlinear Analysis, Contemporary Math. Am. Math. Soc., Providence, 2010, 513, 193-209
- [44] Kakavandi B. A., Amini M., Duality and subdifferential for convex functions on complete CAT(0) metric spaces, Nonlinear Anal., 2010, 73(10), 3450-3455
- [45] Dhompongsa S., Kirk W. A., Panyanak B., Nonexpansive set-valued mappings in metric and Banach spaces, J. Nonlinear Convex Anal., 2007, 8(1), 35-45
- [46] Laowang W., Panyanak B., Strong and ∆-convergence theorems for multivalued mappings in CAT(0) spaces, J. Inequal. Appl., 2009, Art. ID 730132
- [47] Xu H. K., Iterative algorithms for nonlinear operators, J. Lond. Math. Soc., 2002, 66(1), 240-256
- [48] Maingé P. E., Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal., 2008, 16(7), 899-912
- [49] Browder F. E., Petryshyn W. V., Construction of fixed points of nonlinear mappings in Hilbert spaces, J. Math. Anal. Appl., 1967, 20, 197-228
- [50] Browder F. E., Convergence of approximants to fixed points of nonexpansive nonlinear mappings in Banach spaces, Arch. Rational Mech. Anal., 1967, 24, 82-90
- [51] Ugwunnadi G. C., Khan A. R., Abbas M., A hybrid proximal point algorithm for finding minimizers and fixed points in CAT(0) spaces, J. Fixed Point Theory Appl., 2018, 20(2), DOI 10.1007/s11784-018-0555-0
- [52] Ugwunnadi G. C., Izuchukwu C., Mewomo O. T., On nonspreading-type mappings in Hadamard spaces, Bol. Soc. Paran. Mat., 2018, 22, 1-23
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-067d7e86-df78-43c6-bfbf-0e3effb94ee4