PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Parametric Analysis on the Progression of Mechanical Properties on FSW of Aluminum-Copper Plates

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The contemporary work manifests that friction stir welding (FSW) is a viable avenue for joining AA1100 aluminium (Al) to C12200 copper (Cu) plates. In this present study, the response of distinctive welding parameters (viz. tool geometries, tool rotational speed, tool travel speed, and tool plunging depth) on weld quality has been investigated. The present work focused on both microstructural investigation and mechanical properties examination. It has been observed that the process parameters have significant effects on weld quality. The design of the experiments has been executed considering four welding input parameters in two variables and selected L-16 orthogonal array to limit the experimental replications. It has been observed that good quality of welds produced by keeping the tool pin offset around 4mm towards the aluminium side and 2mm towards the copper side. And it has also been noticed that right-hand threaded tool pins are giving good weld quality compared to left-handed thread. The joint efficiencies for the welds E2, E14 which were welded by RHT tools were 75.3% and 74.61% and the Strength (UTS) of the welds for the same tools exhibit’s greater than the LHT tools i.e., 98 and 95Mpa. Moderate hardness values are observed for the same welds E1 and E14 with the parameters 1100rpm, 98welding speed, and 1.6mm tool plunge depth. . It also noticed that the weld quality can be significantly enhanced by using proper tool plunge and tool pin geometries compared to the other process parameters.
Twórcy
  • Department of Mechanical Engineering Technology, CAIT, Jazan University, Prince Mohamed Street, PO Box 114, Jazan, Jizan, 45142, Saudi Arabia
  • Department of Mechanical Engineering Technology, CAIT, Jazan University, Prince Mohamed Street, PO Box 114, Jazan, Jizan, 45142, Saudi Arabia
autor
  • Department of Mechanical Engineering Technology, CAIT, Jazan University, Prince Mohamed Street, PO Box 114, Jazan, Jizan, 45142, Saudi Arabia
autor
  • Department of Mechanical Engineering Technology, CAIT, Jazan University, Prince Mohamed Street, PO Box 114, Jazan, Jizan, 45142, Saudi Arabia
  • Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
Bibliografia
  • 1. Thomas W.M., et al. Friction stir Butt welding. International Patent Application No. PCT/gb92102203 and Great Britain Patent Application No. 9125978.8.
  • 2. Tang W., Guo X., McClue J.C., Murr L.E., Schmidt C. Heat input ad temperature distribution of friction stir welds. Journal of materials processing and manufacturing science. 1999; 7(2): 162–172.
  • 3. Biswas P., Kumar DA., Mandal NR. Friction stir welding of aluminium alloy with varying tool geometry and process parameters. Proceedings. IMechE, Part B: J. Engineering Manufacture. 2011; 226: 641–648.
  • 4. Bhadeshia H.K.D.H., DebRoy T. Critical assessment: friction stir welding of steels. Science and Technology of Welding and Joining. 2009; 14(3): 193–196.
  • 5. DebRoy T., Bhadeshia H.K.D.H. Friction stir welding of dissimilar alloys - a perspective. Science and Technology of Welding and Joining. 2010; 15: 266–270.
  • 6. Nandan R., Lienert TJ., DebRoy T. Toward reliable calculations of heat and plastic flow during friction stir welding of Ti –6Al –4V alloy. International Journal of Materials Research. 2008; 99: 434 –444.
  • 7. Mohanty H.K., Mahapatra M.M., Kumar P., Biswas P., Mandal N.R. Study on the effect of tool profiles on temperature distribution and material flow characteristics in friction stir welding. Proc. IMechE Part B: J. Engineering Manufacture. 2012; 226(9): 1527–1535.
  • 8. Mohanty H.K., Mahapatra M.M., Biswas P., Mandal N.R. Modeling the effects of tool shoulder and probe profile geometries on friction stirred aluminium welds using Response Surface Methodology. Journal of Marine Science and Application. 2012; 11(4): 493–503.
  • 9. Biswas P., Mandal N.R. Effect of Tool Geometries on Thermal History of FSW of AA1100. Welding Journal. 2011; 90: 129–135.
  • 10. Mohanty H.K., Mahapatra M.M., Biswas P., Mandal N.R. Predicting the effects of tool geometries on friction stirred aluminum welds using artificial neural networks and fuzzy logic techniques. International Journal of Manufacturing Research. 2013; 8(3): 296–312.
  • 11. Moreira P.M.G.P., Santos T., Tavares S.M.O., Richter-Trummer V., Vilaca P., de Castro PMST. Mechanical and metallurgical characterization of friction stir welding joints of AA6061-T6 with AA6082-T6. Materials and Design. 2009; 30: 180–187.
  • 12. Janeczek A., Tomków J., Fydrych D. The Influence of Tool Shape and Process Parameters on the Mechanical Properties of AW-3004 Aluminium Alloy Friction Stir Welded Joints. Materials. 2021; 14(12): 3244.
  • 13. Mohan D.G., Gopi S., Tomków J., Memon S. Assessment of Corrosive Behaviour and Microstructure Characterization of Hybrid Friction Stir Welded Martensitic Stainless Steel. Advances in Materials Science. 2021; 21(4): 67–78.
  • 14. Ouyang JH., Kovacevic R. Material flow and microstructure in the friction stir butt welds of same and dissimilar aluminum alloys. Journal of Materials Engineering and Performance. 2001; 11(1): 51–63.
  • 15. Vahid F., Sindo K. Al-to-Cu friction stir lap welding. Metallurgical and Materials Transactions. 2011; 43(1): 303-315.
  • 16. Colligan K. Material Flow Behavior during Friction Stir Welding of Aluminum. Welding Research Supplementary. 1999; 229–237.
  • 17. Seidel T.U., Reynolds A.P. Visualization of the Material Flow in AA2195Friction-Stir Welds Using a Marker Insert Technique. Metallurgy and Material science and Transactions A. 2001; 32: 2879–2884.
  • 18. Guerra M., Schmidt C., McClure J.C., Murr L.E., Nunes A.C.Jr. Flow Pat-terns during Friction Stir Welding. Materials Characterization. 2003; 49: 95–101.
  • 19. London B., Mahoney M., Bingel W., Calabrese M., Bossi RH., Waldron D. Material Flow in Friction Stir Monitored with Al-SiC and Al-W Composite Markers. Proceedings Symposium on FSW and Processing II, K.W. Jata, M.W. Ma-honey, R.S. Mishra, S.L. Semiatin, and T.Lienert, Ed., TMS, 2003; 3–12.
  • 20. Sasikumar A., Gopi S., Dhanesh GM. Effect of welding speed on mechanical properties and corrosion resistance rates of filler induced friction stir welded AA6082 and AA5052 joints. Materials Research Express. 2021; 8: 066531.
  • 21. Balamurugan M., Gopi S., Dhanesh GM., Influence of tool pin profiles on the filler added friction stir spot welded dissimilar aluminium alloy joints. Materials Research Express. 2021; 8: 096531.
  • 22. Anandha Kumar CJ., Gopi S., Shashi K.S., Dhanesh G.M. Mechanical, metallurgical and tribological properties of friction stir processed aluminium alloy 6061 Hybrid surface composites. Metrology and Properties. 2021; 9: 045019.
  • 23. Amancio S., Sheikhi S., Dos Santos J., Bolfarini C. Preliminary study on the microstructure and mechanical properties of dissimilar friction stir welds in aircraft aluminium alloys 2024-T351 and 6056-T4. Journal of Materials Processing Technology. 2008; 206(1–3): 132–142.
  • 24. Thaiping C., Lin Wei-Bang. A prime study on FSW joint of dissimilar metals. Proceedings of the XI International Congress and Exposition, Orlando, Florida, USA. 2008.
  • 25. Bisadi H., Tavakoli A., Tour Sangsaraki M., Tour Sangsaraki K. The influences of rotational and welding speeds on microstructures and mechanical properties of friction stir welded Al5083 and commercially pure copper sheets lap joints. Materials and Design. 2013; 43: 80–88.
  • 26. Beygi R., Kazeminezhad M., Kokabi A.H. Butt joining of Al−Cu bilayer sheet through friction stir welding. Transactions of Nonferrous Materials Society. China. 2012; (22): 2925−2929.
  • 27. Galvao I., Leal RM., Rodrigues DM., Loureiro A. Influence of tool shoulder geometry on properties of friction stir welds in thin copper sheets. Journal of Materials Processing Technology. 2013; 213(2): 129–135.
  • 28. Kim H.J., Lee J.Y., Paik K.W. Effects of Cu/Al Intermetallic Compound (IMC) on Copper Wire and Aluminum Pad Bondability. Transactions on Components packaging and manufacturing Technology. 2003; 26(2): 367–374.
  • 29. Rajan K., Wallach E.R. A transmission electron microscopy study of intermetallic formation in aluminum-copper thin film couples. Journal of Crystal Growth. 1980; 49: 297–302.
  • 30. Kahl S., Osikowicz W. Composite AluminumCopper Sheet Material by Friction Stir Welding and Cold Rolling. Journal of Materials Engineering and Performance. 2013; (22): 2176–2184.
  • 31. Winarto W., Anis M., Eka FB. Mechanical and Microstructural Properties of Friction Stir Welded Dissimilar Aluminum Alloys and Pure Copper Joints. MATEC Web of Conferences IIW 2018. Bali - Indonesia. 2019; 269: 01001.
  • 32. Chularis A.A., Rzaev R.A., Syndetov M.K. Friction stir welding of aluminium and copper alloys. Welding International. 2020; 34(4–6): 230–241.
  • 33. Bora B., Kumar R., Chattopadhyaya S., Borucki, S. Analysis of Variance of Dissimilar Cu-Al Alloy Friction Stir Welded Joints with Different Offset Conditions. Applied Sciences. 2021; 11(10): 4604.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-067c9240-9966-4c9d-a322-e4e7c5664367
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.