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Abstract
Unrelated Parallel Machines Scheduling Problem (U-PMSP) is a category of discrete optimiza-
tion problems in which various manufacturing jobs are assigned to identical parallel machines
at particular times. In this paper, a specific production scheduling task the U-PMSP with
Machine and Job Dependent Setup Times, Availability Constraint, Time Windows and Main-
tenance Times is introduced. Machines with different capacity limits and maintenance times
are available to perform the tasks. After that our problem, the U-PMSP with Machine and Job
Dependent Setup Times, Availability Constraints, Time Windows and Maintenance Times is
detailed. After that, the applied optimization algorithm and their operators are introduced.
The proposed algorithm is the genetic algorithm (GA), and proposed operators are the order
crossover, partially matched crossover, cycle crossover and the 2-opt as a mutation operator.
Then we prove the efficiency of our algorithm with test results. We also prove the efficiency
of the algorithm on our own data set and benchmark data set. The authors conclude that
this GA is effective for solving high complexity parallel machine problems.
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Introduction

The natural goal of manufacturing companies is to
maximize profits. Maximizing profit may includes cost
reduction. One of the main costs for production com-
panies is the loss of production. Such production lost
is the setup times of the machines i.e. switching from
one job to another. In this paper a specific problem,
the Unrelated Parallel Machines Scheduling Problem
with Machine and Job Dependent Setup Times, Avail-
ability Constraints, Time Windows and Maintenance
Times is presented. In the case of our problem there
are m machines and n jobs. Each job has a time win-
dow and processing time. Machines have production
capacities, maintenance times (in this interval, the
machine cannot make any jobs). The jobs also have
setup times. Setup times depend on the last created
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jobs of the machines. The objective function is the
minimization of the setup times. In this paper first,
the Parallel Machines Scheduling Problem and their
variants are introduced, then our problem, the Unre-
lated Parallel Machines Scheduling Problem with Ma-
chine and Job Dependent Setup Times, Availability
Constraints, Time Windows and Maintenance Times.
After that, the Genetic Algorithm and the crossover
and mutation techniques is presented. The genetic al-
gorithm (GA) is a population-based metaheuristic al-
gorithm. GA starts from a population of solutions and
performs crossover and mutation operations on them,
so the algorithm creates a new population. The algo-
rithm performs the creation of the new population up
to the termination condition. The efficiency of the pro-
posed algorithm was also verified with different test
data (benchmark and own). After the test result sec-
tion conclusion remarks are presented.

Parallel Machines Scheduling Problem

In this section, the Parallel Machines Scheduling
Problem is introduced. Each job can be assigned to
one machine. There is a pre-defined setup time for
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each job. The problem is to solve which jobs are
assigned to which machines, therefore the objective
function is to minimize the setup times.

Many types and constraints of the task have been
evolved over the years, which is illustrated in Fig. 1 in
the components section. Additionally, machines may
have some capacity limit in connection with produc-
tion. This type of problem is called Capacitated Par-
allel Machines Scheduling (Lee & Liman, 1993). We
may not do all the jobs, but the goal is to do all jobs
in as little production time as possible, so the ob-
jective function is the minimization the sum of job
completion time (Lee & Liman, 1993). The machines
can be same, or unrelated (different capacity, setup
times, different production cost etc.) (Lenstra et al.,
1990). The maintenance in connection with produc-
tion scheduling can be also considered (Lee & Chen,
2000). Machines can also be shut down in a prede-
fined time, this factor can also be important (Hwang
& Chang, 1998). The release date (Gharbi & Haouari,
2005) means, that a job should be started until a cer-
tain date. Delivery (Gharbi & Haouari, 2005) time
is also important, this means, that a job must be
done until a predefined time. The combination of
release time and due date means the time window
constraint. Hierarchical parallel machine scheduling
means, that a job can be scheduled on a machine
only when its hierarchy level is not higher than that
of the machine (Zhang et al., 2009). Parallel Machine
Scheduling Problem with server is a problem, where

the setup is performed by a server (Kravchenko &
Werner, 1997). It can be a single server problem, in
which case a single server is included, or multiple
server problem, where multiple servers are involved in
the model. Job shop scheduling is also a well-known
production optimization task, where a set of m ma-
chines and n jobs are given. Job i consists of a chain
of mi operations from set O = {1, . . . , N}, each op-
eration i ∈ O belongs to job Ji and has to be pro-
cessed on machine µi. The constraints are the follow-
ings: no one job is pre-empted, no two jobs are pro-
cessed at the same time on the same machine, the
maximum of the completion times (and makespan)
is minimized (Dell’Amico & Trubian, 1993). Flexi-
ble Job Shop Scheduling Problem is a generalization
of the classical Job Shop Scheduling Problem, where
operations can be processed on any among a set of
available machines (Pezzella et al., 2008). The pre-
emption (job splitting) can also be allowed (Graham
et al., 1979). It can occur, that some job has prece-
dence (Graham et al., 1979). The objective function
can be the minimization of the setup times, which is
a loss in production, while at this time, the produc-
tion cannot be done on a machine (Damodaran et al.,
2009). Another objective function can be the mini-
mization of the total tardiness (Liaw et al., 2003).
This means that we allow work outside of the due
date, but there is a penalty point for being late. Av-
erage tardiness means the average difference between
the completion time and the due date of a single job

Fig. 1. The applications of the metaheuristics in Parallel Machines Scheduling Problem (PMSP)
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(Chaudhry & Khan, 2016). In the case of the min-
imization of the total weighted tardiness some jobs
are more important than others (Chaudhry & Khan,
2016). The number of tardy jobs can also be mini-
mized (Chaudhry & Khan, 2016). Mean completion
time means that the average time taken to finish
a single time can also be considered (Chaudhry &
Khan, 2016). Maximum flow time is an objective func-
tion when the longest time a job spends in the shop
and schedule’s cost is directly related to its longest
job (Chaudhry & Khan, 2016). The Mean flow time
means the average time a single job spends in the shop
and a schedule’s cost is directly related to the aver-
age time it takes to process a single job (Chaudhry &
Khan, 2016). The total workload of machines can also
be considered in the objective function (Chaudhry &
Khan, 2016).

In the following, some publications have been pre-
sented, that address the unrelated parallel machines
scheduling problem.

Li et al. (2015) investigated the unrelated paral-
lel machine scheduling problem with energy and tar-
diness cost, where the objective is to minimize the
penalty cost of tardy jobs and energy consumption
cost of machines. The energy consumption cost of
machines consists of three parts: running energy con-
sumption cost, waiting energy consumption cost, and
the warmup energy consumption cost.

Vallada & Ruiz (2011) used genetic algorithm to
solve the UPMSP with sequence dependent setup
time. They used a representation mode where each
machine has a string that stores the jobs that belong
to the machine. Genetic algorithm was also combined
with the use of specific local search.

Lin et al. (2011) investigated the minimization of
regular performance measures in unrelated parallel
machine scheduling problems. A single string repre-
sentation was used for the task, where a separator
character (*) indicates which job will belong to which
machine. The authors solved the problem with genetic
algorithm.

Yang et al. (2012) presented the task of UPMSP
with aging effects and multi-maintenance activities.
In this problem the machine can have several mainte-
nance activities over the scheduling horizon, and the
aging of the machines is also considered.

The Parallel Machine Scheduling Problems are gen-
erally NP-hard problems. Many metaheuristics have
already solved the problem. Fig. 1 shows how many
different algorithms the problem has already been
solved and how many components it has. Our task is
marked with bold letter and with a thicker frame. We
included 7 metaheuristics in our search and divided
the results into 16 components.

We used the genetic algorithm to solve our problem
because it is a frequently used method in parallel ma-
chine scheduling. In the following are some of these
articles are introduced.

Woo et al. (2017) investigated the unrelated parallel
machine scheduling problem with time dependent de-
terioration and multiple rate-modifying activities us-
ing the genetic algorithm. Different genetic algorithms
compared representations such as GA_TS (GA with
triple-dimensional string) GA_RD (GA with com-
pletion time rule-based dispatching heuristic), and
GA_RD proved to be much better. For GA_TS, the
representation consists of three parts, a job order, an
assignment part, and a machine index part. While in
the case of GA_RD, the representation consists of
a single part, a job sequence.

Chung & Kim (2016) also applied a genetic algo-
rithm to the machine scheduling problem with step-
deteriorating jobs and rate-modifying activities prob-
lem. The authors introduced two types of chromo-
some representations that were compared based on
efficiency. The GADS consists of a two-dimensional
string array, which is a sequence array and an assign-
ment array. The sequence array indicates the order
of the jobs, and the assignment array indicates which
job will belong to which machine. GASC is a one-
dimensional string array where the job order is sep-
arated by delimiters (*). The delimiters determine
which job will belong to which machine. For small
data sets, GASC is also efficient, but for larger data
sets, GADS proved to be much more efficient based
on the test results.

Al-Shayea et al. (2020) investigated the Two Identi-
cal Parallel Machines solved the Subjected to Release
Times, Delivery Times and Unavailability Constraints
problem with a genetic algorithm. A permutation rep-
resentation mode was proposed, the representation
mode consisted of a single string that determines the
order of the jobs. In this way of representation, the op-
erators of each genetic algorithm (crossing, mutation)
can be easily implemented.

Tavakkoli-Moghaddam et al. (2009) investigated
the unrelated parallel machines scheduling with
sequence-dependent setup times and precedence con-
straints with genetic algorithm. A single-string per-
mutation representation mode was applied to the
task. They also used the technique where the string
contains the serial number of the jobs and a separa-
tor character (*). Here again, the separator character
determines which job will belong to which machine.

Rajakumar et al. (2006) detailed workflow bal-
ancing in parallel machines with genetic algorithm.
Genetic algorithm was compared with construction
heuristics. Three construction strategies were used,
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which are the followings: random, shortest process-
ing time, longest processing time. According to the
random method, the job-machine assignment is per-
formed randomly. According to the shortest process-
ing time, jobs are sorted in ascending order by pro-
cessing time and assigned to machines. Longest pro-
cessing time is the inverse of shortest processing time.
Based on the test results, genetic algorithm proved to
be the best, but the longest processing time did not
lag far behind in terms of fitness value either. Random
and shortest processing time approaches were not ef-
fective.

The Unrelated Parallel Machines
Scheduling Problem with Machine
and Job Dependent Setup Times,
Availability Constraints, Time
Windows and Maintenance Times

In this section, Unrelated Parallel Machines
Scheduling Problem with Machine and Job Depen-
dent Setup Times, Availability Constraints, Time
Windows and Maintenance Times is presented. In our
case, the number of jobs and machines and the ca-
pacity constraints are known in advance. Capacity
constraint means, how long a machine can run. Jobs
have processing time, which may by machine. There
is a setup time between each job, which also depends
on the machine. Jobs also have time windows, which
means, that jobs must be created within a certain time
interval. The objective function is the minimization of
the setup time. Every job has to be done within the
time window.

In Fig. 2, the Unrelated Parallel Machines Schedul-
ing Problem with Machine and Job Dependent Setup

Times, Availability Constraints, Time Windows and
Maintenance Times is presented. Three machines
make seventeen jobs. All machines have reset state
from which after setup the first job can be done. Af-
ter finishing the work, the machines must be reset. In
Fig. 2, after 0 hour setup time the Machine 1 make
Job 10, then 1 hour setup time the Job 13, then af-
ter 1 hour setup time Job 5, then after 1 hour setup
time Job 8, then after 2 hour setup time Job 6, then
after 1 hour setup time Job 12. There is also a mainte-
nance time between Job 6 and Job 12. All processing
time of the jobs is 21 hours. Machine 2 has 30 hours
of processing time. Machine 2 makes Job 4, Job 17,
Job 1, Job 14, Job 9, Job 15. There is also a mainte-
nance time between Job 9 and Job 15. Machine 3 has
37 hours of processing time. This machine has done
Job 11, Job 16, Job 2, Job 7, Job 3. There is also
a maintenance time between Job 11 and Job 16.

In practice, the parallel machines task most often
appears in manufacturing. Operations must be dis-
tributed among multiple machines. Operations have
machining time and operations must be performed
for deadline. The machines need to be maintained,
so it is possible that production will stop for a while.
Machines can have a cost (which is a one-time cost).
The jobs can have also cost (manufacturing cost).
Parallel machines also appear in the project sched-
ule. Then the machines actually mean the employees.
Tasks should be distributed among employees, taking
care of the working hours, rest periods, lunch breaks,
etc. of the employees, as well as ensuring that the right
employee will get the right project.

In the following, we present the mathematical
model of the Unrelated Parallel Machines Schedul-
ing Problem with Machine and Job Dependent Setup
Times, Availability Constraints, Time Windows and
Maintenance Times.

Fig. 2. Unrelated Parallel Machines Scheduling Problem with Machine and Job Dependent Setup Times, Availability
Constraints, Time Windows and Maintenance Times
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Table 1
The symbols and their explanations

Symbol Explanation of the symbol

njobs Number of jobs

JO = {joi} Jobs

PT = {pti} Processing time of each job

nmachines Number of machines

MA = {mai} Machines

C = {ci} Production capacity of machines

TW = {twi} The time windows of the jobs, where
twi = [aibi]

ST = {sti,j,k} Setup times of the jobs. The 0 idex is
the reset state of the machine.

MT = {mti,j} Maintenance times, where
mti,j = [mtai,jmtbi,j ]

xma
jo1jo2

Decision variable.
1 if the job jo1 and job jo2 belongs
to the machine ma, and after job jo1
the machine performs job jo2
0 else

yjoi Starting time of job joi

Objective function: minZ

where:

Z =

njobs∑
jo=1

nmachines∑
ma=1

st0,jo,max
ma
0,jo

+

njobs∑
jo1=1

njobs∑
jo2=1

nmachines∑
ma=1

stjo1,jo2,max
ma
jo1,jo2

+

njobs∑
jo1=1

nmachines∑
ma=1

stjo1,0,max
ma
jo1,0

. (1)

Constraint 1: Each job must be performed once:

njobs∑
jo1=1

nmachines∑
ma=1

xma
jo1,jo2 = 1 ∀jo2 ∈ JO, (2)

njobs∑
jo2=1

nmachines∑
ma=1

xma
jo1,jo2

= 1 ∀jo1 ∈ JO. (3)

Constraint 2: Continuity of production:

njobs∑
jo1=0

xma
jo1,jo2

=

njobs∑
jo2=0

xma
jo1,jo2

∀ma ∈ MA. (4)

Constraint 3: Time window:

ajo1 ≤ y
ma
jo1
∀ma∈MA, ∀jo1∈JO, (5)

yma
jo1

+ stjo1,jo2,ma ≤ bjo1 ∀ma∈MA, ∀jo1∈JO. (6)

Constraint 4: Machines do not exceed the availabil-
ity constraint limit:

njobs∑
jo1=0

njobs∑
jo2=0

ptjo2,max
ma

jo1,jo2
≤ cm ∀ma ∈ MA. (7)

Constraint 5: Maintenance times of the jobs must
be taken into account:

yma
jo1

+ stjo1,jo2,ma ≤ mtai,j ,

ma∈MA, jo1∈JO, mtai,j ∈mti,j ∈MT (8)

and

ymjo1 ≥ mtbi,j m ∈M,

jo1 ∈ JO, mtbi,j ∈ mti,j ∈ MT (9)

in at least one case.

The optimization algorithm

Parallel machines problems are NP hard, heuristic
algorithms are required to get a solution with accept-
able accuracy within a reasonable amount of time.
In addition, our problem is difficult, because it in-
cludes the following constraints: machine dependent
setup times, job dependent setup times, availability
constraints, multiple time windows and maintenance
times of the machines.

The genetic algorithm is a classical algorithm that,
as we have shown in the literature section, has al-
ready effectively solved the parallel machines schedul-
ing problems in many cases.

The genetic algorithm (GA) is an evolution-inspired
partial search algorithm. The algorithm encodes po-
tential solutions of a specific problem. The algorithm
begins with the population of the solutions (most of-
ten random solutions). Iteratively produces elements
of the next population using elements of the previ-
ous population. Part of the elements of the previous
population will be a part of the next population. The
rest of the next population is filled with individuals
created with crossover and mutation. The crossover
produces generally from two parent individuals two
children individuals. The mutation is a small change
in an individual. The strategy of selecting individu-
als from the previous population is called selection.
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The better everyone in the previous population is, the
more likely that these individuals will be selected. The
“goodness” of individuals is characterized by a fitness
function. The better an individual is, the higher the
value of fitness (Whitley, 1994).

BEGIN PROCEDURE
Step 1. Initialization the population
Step 2. Calculation the fitness values of each solution

WHILE (termination criterion is not met) DO
Step 3. Bringing certain parents to the next genera-

tion unaltered (elitism)
Step 4. Recombination of selected parent pairs

(crossover)
Step 5. Mutation of selected new individuals
Step 6. Evaluation of new individuals
Step 7. Selecting individuals of the next generation

END WHILE
END PROCEDURE

Fig. 3. Pseudo code of genetic algorithm

The first step is the initialization of the population.
Then the fitness values of each individual are calcu-
lated. The next step is creation of the next population.
In this step, the elitism is applied. Then the selected
individuals are recombined. After that, some newly
created individuals can also be mutated.

The most common representation of the genetic
algorithm is binary and permutation representation.
In this article permutation representation is used for
the Unrelated Parallel Machines Scheduling Problem
with Machine and Job Dependent Setup Times, Avail-
ability Constraints, Time Windows and Maintenance
Times.

Fig. 4 illustrates the representation of the prob-
lem. In the case of the Unrelated Parallel Machines
Scheduling Problem with Machine and Job Depen-
dent Setup Times, Availability Constraints, Time
Windows and Maintenance Times permutation repre-
sentation is used. We chose the permutation represen-
tation because it is a simple, easy-to-implement struc-
ture. Classical genetic operators (mutation and cross-
ing) can also be easily implemented, we do not need
to use a new operator. In addition, it has been used
by many authors in research on parallel machines, for
example.

The element of the permutation represents each job.
We assign jobs to machines by taking each job in se-
quence from the beginning of the permutation and
assigning it to the same machine until any constraint
is violated. If any constraint is violated, then we as-
sign it to the next machine.

Fig. 4. Representation of a permutation

In the following the operators of the genetic algo-
rithm will be presented.

Fig. 5 presents the Partially Matched Crossover
(PMX) (Chan & Tansri, 1994). During this crossover
technique first two parents are selected from the pre-
vious population. Then a fitting section is created. In
the next step, the genes are paired. In our example,
the pairs are the followings: (5, 9), (2, 7), (6, 1), (8, 8).
These genes are swapped in both parents. This pro-
cedure results in the chromosomes of the children.

Fig. 5. Partially matched crossover

Fig. 6 illustrates the Order Crossover (OX) (Chan
& Tansri, 1994). In the case of this crossover fitting
sections are also created in the two selected parents.
The elements of the fitting section of the first parent
are deleted in the second parent, and the elements of
the fitting section of the second parent are deleted in
the first parent. The deleted locations are indicated
in Fig. 6 with H letter. The H letters are pushed away
in the fitting sections. The last step is the following:
the first child gets the elements of the fitting section

Fig. 6. Order crossover
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of the second parent, and the second child gets the
elements of the fitting section of the first parent.

Fig. 7 present Cycle crossover (CX) (Chan & Tan-
sri, 1994). In the case of this crossover also two parents
are selected from the previous population. In the case
of this method looking for cycles. The first child gets
the first gene of the first parent. The second child gets
the first gene of the second parent. In our example the
first gene of the first child will be 1, the first gene of
the second parent will be 2. The next step is search-
ing for 2 in the first parent. This gene is in the fifth
position of the first parent. The fifth position of the
second parent is 6, so in the fifth position of the first
child will be 2, and 6 in the second child. This pro-
cedure is continued until the circle is closed, which is
done in the example with (6, 1) pair. After that, the
remaining elements of the first parent will get the sec-
ond child, and the remaining elements of the second
parent will get the first child.

Fig. 7. The cycle crossover

Fig. 8 illustrates the applied mutation technique. In
the case of the 2-opt mutation (Englert et al., 2007)
a section is selected, and the elements of the section

are exchanged. In our example the (5, 8) and (2, 6)
elements are exchanged.

Fig. 8. The 2-opt mutation

Results and discussion

In this section, test results have been presented.
Our algorithm is tested first with a benchmark dataset
from (Tanaka, 2019). In this benchmark dataset the
problem is the Total Tardiness Problem on Identi-
cal Parallel Machines, which is not as difficult task as
ours. In the case of this benchmark problem also given
the number of machines and tasks in advance. The
tasks have also processing times. Each task has only
due date, which means that the task must be com-
pleted to that date. The machines are identical, they
do not have any maintenance times and capacity con-
straints. Jobs do not have any setup times. The objec-
tive function is the completion of all jobs with no due
date. Table 2 illustrates some test results of the bench-
mark dataset. In the table, the results that achieved
the best known result of the benchmark data set so
far are shown in bold and italics. This was achieved
in 4 of 7 cases.

Since we could not find a benchmark data set for
our own task (Unrelated Parallel Machines Schedul-
ing Problem with Machine and Job Dependent Setup
Times, Availability Constraint, Time Windows and
Maintenance Times), we created our own data set. In
the following, we will present our own data set, fol-
lowed by the test result. Table 3 indicates the parame-

Table 2
Test results on Tanaka benchmark dataset (Tanaka, 2019)

Benchmark dataset Result

Name of the dataset Number of jobs Number of machines Number of created
jobs (average)

Number of machines
(average)

20_02_02_06_001 20 2 20 2

20_02_02_06_002 20 2 20 2

20_02_02_06_003 20 2 20 2

20_02_02_06_004 20 2 19 2

25_04_02_08_001 25 4 22 4

25_04_02_08_002 25 4 25 4

25_04_02_08_003 25 4 23 4
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Fig. 9. Test result of the 20_02_02_06_001 dataset

Fig. 10. Test result of the 25_04_02_08_001 dataset

Fig. 11. Test result of the 25_04_02_08_002 dataset

Fig. 12. Test result of our dataset

ters of the machines, Table 4 presents the parameters
of the task. Specifying the setup parameter in our ar-
ticle would be lengthy as the values vary from machine
to machine and from job to job. Values move in the
interval [0, 50].

Table 3
Machine parameters

Machine Capacity Maintenance time
M1 5000 [300, 500], [1000, 1500]
M2 6000 [400, 700]
M3 7000 [500, 600]
M4 6000 [1000, 1200]
M5 8000 [300, 800]
M6 10000 [1500, 2000]
M7 9000 [2000, 2500]

Fig. 12 presents the result of our test data. The fig-
ure shows that all the job has been completed, no job
is cancelled. Based on this result and benchmark re-
sults, our algorithm proved its effectiveness in solving
the parallel machines scheduling problem.

Table 4
Task parameters

Task Start time
window

End time
window

Processing
time

T1 0 1200 300
T2 1200 3000 400
T3 3000 5000 300
T4 2500 4200 200
T5 1125 3600 300
T6 0 1000 400
T7 1000 2000 600
T8 2500 4500 500
T9 3500 4200 200
T10 150 2200 100
T11 2500 5000 200
T12 1800 1200 300
T13 3100 4200 200
T14 2500 3000 100
T15 2000 3500 100
T16 3700 4200 200
T17 3800 5000 300
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Conclusions

Parallel Machines Scheduling is an important in-
dustrial problem because cost-effective production is
one of the long-term goals of production companies.
In this paper first, the variants of the Parallel Ma-
chines Scheduling has been detailed. After that, Unre-
lated Parallel Machines Scheduling Problem with Ma-
chine and Job Dependent Setup Times, Availability
Constraints, Time Windows and Maintenance Times
problem has been introduced. Then Genetic Algo-
rithm approach has been detailed because our prob-
lem is solved with this metaheuristic algorithm. The
applied crossover and mutation operators have also
been presented. We then verify the efficiency of our
algorithm with our tests and benchmarks. In this pa-
per, we demonstrated the efficiency of our genetic al-
gorithm approach using partially matched crossover,
cycle crossover and 2-opt operators for complex par-
allel machines scheduling tasks.
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