Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The example studies a forced response of plate with viscoelastic auxetic damper located at the free end of the plate. Damping elements consist of the cover layer and layer of viscoelastic material with positive or negative Poisson's ratio. Viscoelastic materials are often used for reduction of vibration (seismic or wind induced vibrations in building structures or other structures). The common feature is that the frequency of the forced vibrations is low. Calculations are made using finite element method with Comsol Multiphysics software.
Czasopismo
Rocznik
Tom
Strony
art. no. 2018003
Opis fizyczny
Bibliogr. 31 poz., rys., wykr.
Twórcy
autor
- Poznan University of Technology, Institute of Applied Mechanics, ul. Jana Pawła II 24, 60-965 Poznan
Bibliografia
- 1. L. J. Gibson, The elastic and plastic behaviour of cellular materials, University of Cambridge, Churchill College (doctoral thesis) 1981.
- 2. L. J. Gibson, M. F. Ashby, G. S. Schayer, C.I. Robertson, The mechanics of two-dimensional cellular materials, Proc. Roy. Soc. Lond. A 382 (1982) 25 – 42.
- 3. L. J. Gibson, M.F. Ashby, The mechanics of three-dimensional cellular materials, Proc. Roy. Soc. Lond. A 382 (1982) 43 – 59.
- 4. L. J. Gibson, M. F. Ashby, Cellular Solids: Structure and Properties, 2nd ed.; Pergamon Press: London, UK, 1988.
- 5. R. F. Almgren, An isotropic three-dimensional structure with Poisson's ratio =−1, Journal of Elasticity 15 (1985) 427 – 430.
- 6. K. W. Wojciechowski, Constant thermodynamic tension Monte Carlo studies of elastic properties of a two-dimensional system of hard cyclic hexamers, Molecular Physics 61 (1987) 1247 – 1258.
- 7. R. Lakes, Foam structures with a negative Poisson’s ratio, Science, 235 (1987) 1038 – 1040.
- 8. R. Lakes, Advances in negative Poisson’s ratio materials, Advanced Materials (Weinheim), 5(4) (1993) 293 – 296.
- 9. X. Zhang, D. Yang, Mechanical Properties of Auxetic Cellular Material Consisting of Re-Entrant Hexagonal Honeycombs, Materials (Basel), 9(11) (2016) 900.
- 10. Y. Prawoto, Seeing auxetic materials from the mechanic point of view: A structural review on the negative Poisson’s ratio, Computational Materials Science, 58 (2012) 140 – 153.
- 11. J. C. A. Elipe, A. D. Lantada, Comparative study of auxetic geometries by means of computer-aided design and engineering, Smart Mater. Struct., 21(10) (2012) 105004.
- 12. T. C. Lim, Auxetic Materials and Structures, Springer-Verlag, Singapur, 2015.
- 13. K. K. Saxena, R. Das, E. P. Calius, Three Decades of Auxetics Research Materials with Negative Poisson’s Ratio: A Review, Adv. Eng. Mater., 18 (2016) 1847 – 1870.
- 14. H. M. A. Kolken, A. A. Zadpoor, Auxetic mechanical metamaterials, RSC Adv., 7, (2017) 5111.
- 15. T. Strek, H. Jopek, K. W. Wojciechowski, The influence of large deformations on mechanical properties of sinusoidal ligament structures, Smart Mater. Struct., 25 (2016) 054002 (10pp).
- 16. D. Li, J. Maa, L. Dong, R. S. Lakes, A bi-material structure with Poisson's ratio tunable from positive to negative via temperature control, Materials Letters, 181 (2016) 285 – 288.
- 17. T. Strek, H. Jopek, E. Idczak, K. W. Wojciechowski, Computational Modelling of Structures with Non-Intuitive Behaviour, Materials, 10 (2017) 1386.
- 18. T. Strek, A. Matuszewska, H. Jopek, Finite element analysis of the influence of the covering auxetic layer of plate on the contact pressure, Phys. Status Solidi B, 254(12) (2017) 1700103.
- 19. H. Jopek, Finite Element Analysis of Tunable Composite Tubes Reinforced with Auxetic Structures, Materials, 10 (2017) 1359.
- 20. H. Jopek, T. Strek, Torsion of a two-phased composite bar with helical distribution of constituents, Phys. Status Solidi B, 254(12) (2017) 1700050.
- 21. E. Idczak, T. Strek, Minimization of Poisson's ratio in anti-tetra-chiral two-phase structure, IOP Conf. Series: Materials Science and Engineering 248 (2017) 012006.
- 22. E. Idczak, T. Strek, Dynamic Analysis of Optimized Two-Phase Auxetic Structure, Vibrations in Physical Systems, 28 (2017) 2017003-01-20017003-12.
- 23. F. Scarpa, L. G. Ciffo, J. R. Yates, Dynamic properties of high structural integrity auxetic open cell foam, Smart Mater. Struct., 13 (2004) 49.
- 24. R. Lakes, T. Lee, A. Bersie, Y. C. Wang, Extreme damping in composite materials with negative-stiffness inclusions. Nature, 410 (2001) 565 – 567.
- 25. M. Nienartowicz, T. Stręk, Finite Element Analysis of Dynamic Properties of Thermally Optimal Two-Phase Composite Structure, Vibrations in Physical Systems, 26 (2014) 203 – 210.
- 26. T. Strek, H. Jopek, M. Nienartowicz, Dynamic response of sandwich panels with auxetic cores, Phys. Status Solidi B, 252(7) (2015) 1540 – 1550.
- 27. E. Idczak, T. Stręk, Computational Modelling of Vibrations Transmission Loss of Auxetic Lattice Structure, Vibrations in Physical Systems, 27 (2016) 124 – 128.
- 28. W. Liu, M. Wang, T. Luo, Z. Lin, In-plane dynamic crushing of re-entrant auxetic cellular structure, Materials & Design, 100 (2016) 84 – 91.
- 29. K. L. Shen, T. T. Soong, Modeling of Viscoelastic Dampers for Structural Applications, J. Eng. Mech., 121 (1995) 694 – 701.
- 30. S. W. Park, Analytical Modeling of Viscoelastic Dampers for Structural and Vibration Control, Int. J. Solids and Structures, 38 (2001) 8065 – 8092.
- 31. D. Gutierrez-Lemini, Engineering Viscoelasticity, Springer, New York 2014.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-06680047-905e-4bf9-b11f-777239df5dfe