PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of aging solutions on wear resistance and hardness of selected resin-based dental composites

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The purpose of this study was to investigate the effect of different plasticizing aging solutions on wear resistance and hardness of selected universal resin-based dental composites. Methods: Three light cured (one nanofilled, two microhybride) and one hybride chemical cured composites were aged at 37 °C for 48 h in distillated water, ethyl alcohol solution or Listerine mouthwash. After aging the microhardness tests were carried out and then tribological tests were performed in the presence of aging solution at 37 °C. During wear testing coefficients of friction were determined. The maximal vertical loss in micrometers was determined with profilometer. Results: Aging in all liquids resulted in a significant decrease in hardness of the test materials, with the largest values obtained successively in ethanol solution, mouthwash and water. The effect of the liquid was dependent on the particular material, but not the type of material (interpreted as the size of filler used). Introduction of mouthwash instead of water or ethanol solution resulted in a significant reduction in the coefficient of friction. The lowest wear resistance was registered after aging in ethanol and for the chemical cured hybrid composite, but the vertical loss was strongly material dependent. Conclusions: The effect of different aging solution, including commercial mouthrinse, on hardness and wear was material dependent, and cannot be deduced from their category or filler loading. There is no simple correlation between hardness of resin-based dental composites and their wear resistance, but softening of particular composites materials during aging leads to the reduction of its wear resistance.
Rocznik
Strony
43--52
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
autor
  • Silesian University of Technology, Faculty of Mechanical Engineering, Institute of Engineering Materials and Biomaterials, Gliwice, Poland
autor
  • Silesian University of Technology, Faculty of Mechanical Engineering, Institute of Engineering Materials and Biomaterials, Gliwice, Poland
autor
  • Silesian University of Technology, Faculty of Mechanical Engineering, Institute of Engineering Materials and Biomaterials, Gliwice, Poland
autor
  • Silesian University of Technology, Faculty of Mechanical Engineering, Institute of Engineering Materials and Biomaterials, Gliwice, Poland
autor
  • Silesian University of Technology, Faculty of Mechanical Engineering, Institute of Engineering Materials and Biomaterials, Gliwice, Poland
autor
  • School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, Department of Dental Prosthetics, Chair of Prosthetics and Dental Materials, Katowice, Poland
Bibliografia
  • [1]. Baldissera R.A., Corrêa M.B., Schuch H.S., Collares K., Nascimento G.G., Jardim P.S., Moraes R.R., Opdam N.J., Demarco F.F. Are there universal restorative composites for anterior and posterior teeth?, J Dent, 2013, vol. 41(11), 1027-1035.
  • [2]. Barkmeier W.W., Latta M.A., Erickson R.L., Lambrechts P. Comparison of laboratory and clinical wear rates of resin composites, Quintessence Int, 2004, vol. 35, 269–274.
  • [3]. Barszczewska-Rybarek I., Jurczyk S. Comparative Study of Structure-Property Relationships in Polymer Networks Based on Bis-GMA, TEGDMA and Various Urethane-Dimethacrylates, Materials, 2015, vol. 8(3), 1230-1248.
  • [4]. Beun S., Glorieux T., Devaux J., Vreven J., Leloup G. Characterization of nanofilled compared to universal and microfilled composites, Dent Mater, 2007, vol. 23(1), 51-59.
  • [5]. Da Rosa Rodolpho P.A., Donassollo T.A., Cenci M.S., Loguércio A.D., Moraes R.R., Bronkhorst E.M., Opdam N.J., Demarco F.F. 22-Year clinical evaluation of the performance of two posterior composites with different filler characteristics, Dent Mater, 2011, vol. 27(10), 955-963.
  • [6]. Domarecka M., Sokołowska A., Szynkowska M.I., Sokołowski K., Sokołowski J., Łukomska-Szymańskaa M. Some properties of flowable low-shrinkage dental composites, Przemysł Chemiczny, 2014, vol. 93(5), 1000-1003.
  • [7]. Ferracane J.L. Hygroscopic and hydrolytic effects in dental polymer networks, Dent Mater, 2006, vol. 22(3), 211-222.
  • [8]. Festuccia M.S., Garcia Lda F., Cruvinel D.R., Pires-De-Souza Fde C. Color stability, surface roughness and microhardness of composites submitted to mouthrinsing action, J Appl Oral Sci, 2012, vol. 20(2), 200-205.
  • [9]. Gatti A.M., Rivasi F. Biocompatibility of micro- and nanoparticles. Part I. In liver and kidney, Biomaterials, 2002, vol. 23, 2381–2387.
  • [10]. Gatti A.M. Biocompatibility of micro- and nano-particles in the colon. Part II. Biomaterials, 2004, vol. 25, 385–392.
  • [11]. Granada S., Hicks RA. Changes in self-reported incidence of nocturnal bruxism in college students: 1966–2002, Percept Mot Skills, 2003, vol. 97, 777–778.
  • [12]. Han J.M., Zhang H., Choe H.S., Lin H., Zheng G., Hong G. Abrasive wear and surface roughness of contemporary dental composite resin, Dent Mater J, 2014, vol. 33(6), 725- 732.
  • [13]. Heintze S.D., Zimmerli B. Relevance of in-vitro tests of adhesive and composite dental materials. A review in 3 parts. Part 2: non-standardized tests of composite materials, Schweiz Monatsschr Zahnmed, 2011, vol. 121(10), 916-930.
  • [14]. Heintze S.D. How to qualify and validate wear simulation devices and methods, Dent Mater, 2006, vol. 22(8), 712-734.
  • [15]. Koin P.J., Kilislioglu A., Zhou M., Drummond J.L. Hanley L. Analysis of degradation of a model dental composite, J Dent Res, 2008, vol. 87(7), 661-665.
  • [16]. Lazaridou D., Belli R., Petschelt A., Lohbauer U. Are resin composites suitable replacements for amalgam? A study of two-body wear, Clin Oral Investig, 2015, vol. 19(6), 1485-1492.
  • [17]. Sarrett D.C., Coletti D.P., Peluso A.R. The effects of alcoholic beverages on composite wear, Dent Mater, 2000, vol. 16, 62-67.
  • [18]. Schmidt C., Ilie N. The effect of aging on the mechanical properties of nanohybrid composites based on new monomer formulations, Clin Oral Investig, 2013, vol. 17(1), 251-257.
  • [19]. Schwartz J.I., Söderholm K.J. Effects of filler size, water, and alcohol on hardness and laboratory wear of dental composites, Acta Odontol Scand, 2004, vol. 62(2), 102-106.
  • [20]. Silva E.M., Poskus L.T. Guimarães J.G. Influence of light-polymerization modes on the degree of conversion and mechanical properties of resin composites: a comparative analysis between a hybrid and a nanofilled composite, Oper Dent, 2008, vol. 33(3), 287- 293.
  • [21]. Söderholm K.J., Lambrechts P., Sarrett D., Abe Y., Yang M.C., Labella R., et al., Yildiz E., Willems G. Clinical wear performance of eight experimental dental composites over three years determined by two measuring methods, Eur J Oral Sci, 2001, vol. 109, 273– 281.
  • [22]. Tornavoi T.D., Sato S., Silva L.J, Agnelli J.A.M., Reis dos Cândido E.A. Analysis of surface hardness of artificially aged resin composites, Mater Res, 2012, vol. 15(1), 9-14.
  • [23]. Trujillo-Lemon M., Ge J., Lu H., Tanaka J., Stansbury J.W. Dimethacrylate derivates of dimer acid, J Polymer Science Part A, 2006, vol. 44, 3921–3929.
  • [24]. Tsui T.Y. Joo Y. A new technique to measure through film thickness fracture toughness, Thin Solid Films, 2001, vol. 401(1-2), 203-210.
  • [25]. Turssi C.P., Ferracane J.L., Serra MC. Abrasive wear of resin composites as related to finishing and polishing procedures, Dent Mater, 2005, vol. 21(7), 641-648.
  • [26]. Van Leeuwen M.P., Slot D.E, Van der Weijden G.A. The effect of an essential-oils mouthrinse as compared to a vehicle solution on plaque and gingival inflammation: a systematic review and meta-analysis, Int J Dent Hyg, 2014, vol. 12(3), 160-167.
  • [27]. Wu W., McKinney J.E. Influences of chemical on wear of dental composites, J Dent Res, 1982, vol. 61, 1180–1183.
  • [28]. Yanikoglu N., Duymus Z.Y. Yilmaz B. Effects of different solutions on the surface hardness of composite resin materials, Dent Mater J, 2009, vol. 28(3), 344-351.
  • [29]. Yap A.U., Tan B.W., Tay L.C., Chang K.M., Loy T.K., Mok B.Y. Effect of mouthrinses on microhardness and wear of composite and compomer restoratives, Oper Dent, 2003, vol. 28(6), 740-746.
  • [30]. Yesil Z.D., Alapati S., Johnston W., Seghi R.R. Evaluation of the wear resistance of new nanocomposite resin restorative materials, J Prosthet Dent, 2008, vol. 99(6), 435- 443
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-06667711-4ed3-4259-82c6-a4330d9e5559
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.