PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Tree Quantum Key Agreement Protocol for Secure Multiparty Communication

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper introduces a tree multiparty quantum key agreement protocol for secure communication between multiple participants, specifically tailored for tree topologies. Based on the BB84 protocol, the proposed solution employs hierarchical tree structures and XOR operations to facilitate efficient and secure key generation. Key elements are exchanged among participants in an equitable manner, ensuring that each participant contributes equally to the generation of the shared key. The protocol demonstrates robust security, effectively defending against both external and internal attacks, and achieves a quantum efficiency of ½(N–1), where N is the number of participants. Additionally, the protocol is readily implementable with current quantum technologies, utilizing single-photon transmission to facilitate secure key distribution.
Rocznik
Tom
Strony
43--50
Opis fizyczny
Bibliogr. 21 poz., rys., wykr.
Twórcy
autor
  • LAMIE Laboratory, University of Batna 2, Batna, Algeria
  • LASTIC Laboratory, University of Batna 2, Batna, Algeria
  • LEREESI Laboratory, HNS-RE2SD, Batna, Algeria
  • LEREESI Laboratory, HNS-RE2SD, Batna, Algeria
Bibliografia
  • [1] Y. Shen, Z. Sun, and T. Zhou, “Survey on Asymmetric Cryptography Algorithms”, 2021 International Conference on Electronic Information Engineering and Computer Science (EIECS), Changchun, China, 2021 (https://doi.org/10.1109/EIECS53707.2021.9588106).
  • [2] Y. Cheng, Y. Liu, Z. Zhang, and Y. Li, “An Asymmetric Encryptionbased Key Distribution Method for Wireless Sensor Networks”, Sensors, vol. 23, no. 14, 2023 (https://doi.org/10.3390/s23146460).
  • [3] V. Martin, J. Martinez-Mateo, and M. Peev, “Introduction to Quantum Key Distribution”, in: Wiley Encyclopedia of Electrical and Electronics Engineering, 2017 (https://doi.org/10.1002/047134608X.W8354).
  • [4] B.-X. Liu, R.-C. Huang, Y.-G. Fang, and G.-B. Xu. “Measurement device-independent Multi-party Quantum Key Agreement”, Frontiers in Quantum Science and Technology, vol. 2, 2023 (https://doi.org/10.3389/frqst.2023.1182637).
  • [5] Y. Challal and H. Seba, “Group Key Management Protocols: A Novel Taxonomy”, International Journal of Computer and Information Engineering, vol. 2, no. 1, 2008 (https://doi.org/10.5281/zenodo.1077968).
  • [6] N. Zhou, G. Zeng, and J. Xiong, “Quantum Key Agreement Protocol”, Electronics Letters, vol. 40, no. 18, pp. 1149–1150, 2004 (https://doi.org/10.1049/el:20045183).
  • [7] B. Liu, D. Xiao, H.-Y. Jia and R.-Z. Liu, “Collusive Attacks to ‘Circletype’ Multi-party Quantum Key Agreement Protocols”, Quantum Information Processing, vol. 15, pp. 2113–2124, 2016 (https://doi.org/10.1007/s11128-016-1264-5).
  • [8] K.-F. Yu et al., “Design of Quantum Key Agreement Protocols with Fairness Property”, arXiv, 2015 (https://doi.org/10.48550/arXiv.1510.02353)
  • [9] S.-K. Chong and T. Hwang, “Quantum Key Agreement Protocol Based on BB84”, Optics Communications, vol. 283, no. 6, pp. 1192–1195, 2010 (https://doi.org/10.1016/j.optcom.2009.11.007).
  • [10] Z. Sun et al., “Improvements on Multiparty Quantum Key Agreement with Single Particles”, Quantum Information Processing, vol. 12, pp. 3411–3420, 2013 (https://doi.org/10.1007/s11128-013-0608-7).
  • [11] R.-H. Shi and H. Zhong, “Multi-party Quantum Key Agreement with Bell States and Bell Measurements”, Quantum Information Processing, vol. 12, pp. 921–932, 2013 (https://doi.org/10.1007/s11128-012-0443-2).
  • [12] X.-R. Yin, W.-P. Ma, and W.-Y. Liu, “Three-party Quantum Key Agreement with Two-photon Entanglement”, International Journal of Theoretical Physics, vol. 52, no. 11, pp. 3915–3921, 2013 (https://doi.org/10.1007/s10773-013-1702-4).
  • [13] G.-B. Xu, Q.-Y. Wen, F. Gao, and S.-J. Qin, “Novel Multiparty Quantum Key Agreement Protocol with GHZ States”, Quantum Information Processing, vol. 13, p. 2587–2594, 2014 (https://doi.org/10.1007/s11128-014-0816-9).
  • [14] Y.-F. He and W. Ma, “Quantum Key Agreement Protocols with Fourqubit Cluster States”, Quantum Information Processing, vol. 14, no. 9, pp. 3483–3498, 2015 (https://doi.org/10.1007/s11128-015-1060-7).
  • [15] Z. Sun et al., “Multi-party Quantum Key Agreement by an Entangled Six-qubit State”, International Journal of Theoretical Physics, vol. 55, pp. 1920–1929, 2016 (https://doi.org/10.1007/s10773-015-2831-8).
  • [16] P.Wang, R. Zhang, and Z.W. Sun, “Practical QuantumKeyAgreement Protocol Based on BB84”, Quantum Information and Computation, vol. 22, pp. 241–250, 2022 (https://doi.org/10.26421/QIC22.3-4-3).
  • [17] P.W. Shor and J. Preskill, “Simple Proof of Security of the BB84 Quantum Key Distribution Protocol”, Physical Review Letters, vol. 85, no. 2, p. 441–444, 2000 (https://doi.org/10.1103/PhysRevLett.85.441).
  • [18] M. Elboukhari, M. Azizi, and A. Azizi, “Verification of Quantum Cryptography Protocols by Model Checking”, International Journal of Network Security and Its Applications, vol. 2, no. 4, pp. 43–53, 2010 (https://doi.org/10.5121/ijnsa.2010.2404).
  • [19] A. Cabello, “Quantum Key Distribution in the Holevo Limit”, Physical Review Letters, vol. 85, pp. 5635–5638, 2001 (https://doi.org/10.1103/PhysRevLett.85.5635).
  • [20] H. Yang et al., “A Tree-type Multiparty Quantum Key Agreement Protocol Against Collusive Attacks”, International Journal of Theoretical Physics, vol. 62, art. no. 7, 2023 (https://doi.org/10.1007/s10773-022-05265-w).
  • [21] J. Gu and T. Hwang, “Improvement of Novel Multiparty Quantum Key Agreement Protocol with GHZ States”, International Journal of Theoretical Physics, vol. 56, pp. 3108–3116, 2017 (https://doi.org/10.1007/s10773-017-3478-4).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-06660e05-728d-4fdd-816b-bcd87ec324ef
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.