PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Reduction of chosen gaseous pollutants from rabbit excrement in ex situ conditions, using natural manure additives

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Animal production is a major source of environmental pollutants, so it is becoming crucial to search for new methods to reduce their release while maintaining animal welfare. The aim of the study was to apply natural additives to rabbit manure in ex situ conditions to reduce the volume of released gaseous pollutants like ammonia (NH3), methane (CH4) and hydrogen sulphide (H2S). The study was carried out in two stages, each with a control group and five experimental groups with additives, natural sorbents (zeolite, bentonite biochar, perlite, mixtures in various proportions of zeolite, biochar and bentonite as well as perlite and biochar) or dried plants containing saponins (Tribulus terrestris and Lysimachia nummularia). Pollutants from each group were measured continuously for one month. In stage 1, both in the case of NH3 and CH4, statistically significant differences were observed between the tested groups. The use of sorbent mix and Tribulus terrestris was shown to reduce the release of both NH3 (by 80% and 83%, respectively) and CH4 (by 17% and 25%, respectively). The greatest reduction of NH3 in stage 2 was achieved when perlite with the addition of biochar was used (56%), and CH4 was achieved when Bacillus azotofixans sp. nov. bacteria were used (38%).
Wydawca
Rocznik
Tom
Strony
151--158
Opis fizyczny
Bibliogr. 45 poz., tab., wykr.
Twórcy
  • University of Life Science in Lublin, Department of Animal Hygiene and Environmental Hazards, ul. Akademicka 13, 20-950, Lublin, Poland
  • University of Life Science in Lublin, Department of Animal Hygiene and Environmental Hazards, ul. Akademicka 13, 20-950, Lublin, Poland
  • Institute of Technology and Life Sciences, National Research Institute, Falenty, Hrabska Ave., 3, 05-090 Raszyn, Poland
  • Student Scientific Club of Occupational and Environmental Hazards, University of Life Sciences in Lublin, ul. Akademicka 13, 20-950 Lublin
  • University of Life Science in Lublin, Department of Animal Hygiene and Environmental Hazards, ul. Akademicka 13, 20-950, Lublin, Poland
  • University of Life Science in Lublin, Department of Animal Hygiene and Environmental Hazards, ul. Akademicka 13, 20-950, Lublin, Poland
Bibliografia
  • Ahmed, Z. et al. (2022) “Economic growth, renewable energy consumption, and ecological footprint: Exploring the role of environmental regulations and democracy in sustainable development,” Sustainable Development, 30(4), pp. 595–605. Available at: https://doi.org/10.1002/sd.2251.
  • Cabanillas, C., Stobbia, D. and Ledesma, A. (2013) “Production and income of basil in and out of season with vermicomposts from rabbit manure and bovine ruminal contents alternatives to urea,” Journal of Cleaner Production, 47, pp. 77–84. Available at: https://doi.org/10.1016/j.jclepro.2013.02.012.
  • Calvet, S. et al. (2008) “Experimental balance to estimate efficiency in the use of nitrogen in rabbit breeding,” World Rabbit Science, 16(4), pp. 205–211. Available at: https://doi.org/10.4995/wrs.2008.615.
  • Calvet, S. et al. (2011) “Characterization of the indoor environment and gas emissions in rabbit farms,” World Rabbit Science, 19(1), pp. 49–61. Available at: https://doi.org/10.4995/wrs.2011.802.
  • Çelebi, H. (2019) “The applicability of evaluable wastes for the adsorption of Reactive Black 5,” International Journal of Environmental Science and Technology, 16(1), pp. 135–146. Available at: https://doi.org/10.1007/s13762-018-1969-3.
  • Kodeks (2016) Kodeks przeciwdziałania uciążliwości zapachowej [Code for counteracting odor nuisance]. Warszawa: Ministerstwo Środowiska. Departament Ochrony Powietrza i Klimatu.
  • Dach, J. and Zbytek, Z. (2008) “Wpływ wysokobiałkowego żywienia trzody na wielkość emisji amoniaku z kompostowanego obornika [The influence of highly proteic swine nourishment on ammonia emission from composted manure],” Journal of Research and Applications in Agricultural Engineering, 53(3), pp. 48–52. Available at: https://tech-rol.eu/images/Archiwum_X/2019/05/2008_3_DZ.pdf (Accessed: April 22, 2024).
  • Dinuccio, E. et al. (2019) “Organic matter and nitrogen balance in rabbit fattening and gaseous emissions during manure storage and simulated land application,” Agriculture, Ecosystems & Environment, 269, pp. 30–38. Available at: https://doi.org/10.1016/j.agee.2018.09.018.
  • Directive (2016) “Directive (EU) 2016/2284 of the European Parliament and of the Council of 14 December 2016 on the reduction of national emissions of certain atmospheric pollutants, amending Directive 2003/35/EC and repealing Directive 2001/81/EC (Text with EEA relevance),” Official Journal, L 344.
  • Douglas, G.J., Price, J.F. and Page, C.P. (1994) “A method for the longterm exposure of rabbits to environmental pollutant gases,” The European Respiratory Journal, 7(8), pp. 1516–1526. Available at: https://doi.org/10.1183/09031936.94.07081516.
  • Emmerling, C., Krein, A. and Junk, J. (2020) “Meta-analysis of strategies to reduce NH3 emissions from slurries in European agriculture and consequences for greenhouse gas emissions,” Agronomy, 10, 1633. Available at: https://doi.org/10.3390/agronomy10111633.
  • Gómez-Brandón, M., Lores, M. and Domínguez, J. (2013) “Changes in chemical and microbiological properties of rabbit manure in a continuous-feeding vermicomposting system,” Bioresource Technology, 128, pp. 310–316. Available at: https://doi.org/10.1016/j.biortech.2012.10.112.
  • Kaikiti, K., Stylianou, M. and Agapiou, A. (2021) “Use of biochar for the sorption of volatile organic compounds (VOCs) emitted from cattle manure,” Environmental Science Pollution Research, 28, pp. 59141–59149. Available at: https://doi.org/10.1007/s11356-020-09545-y.
  • Kowalska, D., Gugołek, A. and Strychalski, J. (2016) Zastosowanie pasz rzepakowych w żywieniu królików. Monografia [The use of rapeseed feed in rabbit nutrition. Monograph]. Kraków: Instytut Zootechniki PIB. Available at: https://monografie.izoo.krakow.pl/files/978-83-7607-274-6.pdf (Accessed: April 22, 2024).
  • Kwaśny, J. et al. (2020) “Wpływ modyfikacji bentonitu na jego właściwości adsorpcyjne [Impact of bentonite modification on its adsorption properties],” Przemysł Chemiczny, 99(9), pp. 1335–1338. Available at: https://doi.org/10.15199/62.2020.9.15.
  • Kweku, D.W. et al. (2018). “Greenhouse effect: Greenhouse gases and their impact on global warming,” Journal of Scientific Research and Reports, 17(6), pp. 1–9. Available at: https://doi.org/10.9734/JSRR/2017/39630.
  • Li, R. et al. (2022) “Rabbit manure compost as a peat substitute for compound growing media: Proportioning optimization according to physiochemical characteristics and seedling effects,” Frontiers in Plant Science, 13, 1008089. Available at: https://doi.org/10.3389/fpls.2022.1008089.
  • Lins, E.A.M. and Lins, A. (2020) “An analysis of the aspects and impacts to human health caused by effluents from a solid waste landfill: Case study,” International Journal of Advanced Engineering and Technology, 4(2), pp. 14–23. Available at: https://www.allengineeringjournal.com/assets/archives/2020/vol4issue2/4-3-12-831.pdf (Accessed: April 15, 2024)
  • Liu, J. et al. (2023) “Highly efficient reduction of ammonia emissions from livestock waste by the synergy of novel manure acidification and inhibition of ureolytic bacteria,” Environment International, 172, 107768. Available at: https://doi.org/10.1016/j.envint.2023.107768.
  • Lonardo di, S. et al. (2021) “Testing new peat-free substrate mixtures for the cultivation of perennial herbaceous species: A case study on Leucanthemum vulgare Lam,” Scientia Horticulturae, 289, 110472. Available at: https://doi.org/10.1016/j.scienta.2021.110472.
  • Marszałek, M., Kowalski, Z. and Makara, A. (2018) “Emission of greenhouse gases and odorants from pig slurry-effect on the environment and methods of its reduction,” Ecological Chemistry and Engineering, 25(3), pp. 383–394. Available at: https://doi.org/10.1515/eces-2018-0026.
  • Meng, X. et al. (2022) “Novel seedling substrate made by different types of biogas residues: Feasibility, carbon emission reduction and economic benefit potential,” Industrial Crops and Products, 184, 115028. Available at: https://doi.org/10.1016/j.indcrop.2022.115028.
  • Naidu, R. et al. (2021) “Chemical pollution: A growing peril and potential catastrophic risk to humanity,” Environment International, 156, 106616. Available at: https://doi.org/10.1016/j.envint.2021.106616.
  • Nowakowicz-Dębek, B. et al. (2014) “Monitoring gaseous pollution in the air in livestock buildings,” Annales Universitatis Mariae Curie-Skłodowska. Sectio E, 32(2), pp. 11–16.
  • Nowakowicz-Dębek, B. et al. (2020) “Technical note: Residues of gaseous air pollutants in rabbit (Oryctolagus cuniculus) tissues,” World Rabbit Science, 28(2), pp. 103–108. Available at: https://doi.org/10.4995/wrs.2020.13175.
  • Obwieszczenie (2023) “Obwieszczenie Marszałka Sejmu Rzeczypospolitej Polskiej z dnia 27 stycznia 2023 r. w sprawie ogłoszenia jednolitego tekstu ustawy o nawozach i nawożeniu [Announcement of the Marshal of the Sejm of the Republic of Poland of January 27, 2023 on the announcement of the uniform text of the act on fertilizers and fertilization],” Dz.U., 2023 poz. 569.
  • Olszewski, T., Dach, J. and Jędruś, A. (2005) “Modelowanie procesu kompostowania nawozów naturalnych w aspekcie generowania ciepła [Modeling the process of composting natural fertilizers in terms of heat generation],” Journal of Research and Applications in Agricultural Engineering, 50(2), pp. 40–42. Available at: https://tech-rol.eu/images/Archiwum_X/2019/04/8-1.pdf (Accessed: April 22, 2024).
  • Ossowski, M. et al. (2022) “Zastosowanie naturalnych sorbentów w żywieniu świń jako metoda zmniejszania zanieczyszczeń z pomieszczeń hodowlanych [The use of natural sorbents in the diet of pigs as a method for reducing gaseous pollutants and manure nutrients from livestock housing],” Przemysł Chemiczny, 101(5), pp. 297–303. Available at: https://doi.org/10.15199/62.2022.5.1.
  • Petersen, J. and Sørensen, P. (2008) “Loss of nitrogen and carbon during storage of the fibrous fraction of separated pig slurry and influence on nitrogen availability,” The Journal of Agricultural Science, 146(4), pp. 403–413. Available at: https://doi.org/10.1017/S0021859607007654.
  • Petersen, S.O. et al. (2007) “Recycling of livestock manure in a whole-farm perspective,” Livestock Science, 112(3), pp. 180–191, Available at: https://doi.org/10.1016/j.livsci.2007.09.001.
  • Pliś, I. et al. (2015) “Adsorption of waste gases on zeolite minerals,” Przemysł Chemiczny, 94(2), pp. 186–190. Available at: https://doi.org/10.15199/62.2015.2.11.
  • Pu, S. et al. (2022) “Characteristics of PM2.5 and its correlation with feed, manure and NH3 in a pig-fattening house,” Toxics, 10(3), 145. Available at: https://doi.org/10.3390/toxics10030145.
  • Rangling, L. et al. (2022) “Rabbit manure compost as a peat substitute for compound growing media: Proportioning optimization according to physiochemical characteristics and seedling effects,” Frontiers in Plant Science, 13, 1008089. Available at: https://doi.org/10.3389/fpls.2022.1008089.
  • Richard, G., Izah, S.C. and Ibrahim, M. (2023) “Air pollution in the Niger Delta region of Nigeria: Sources, health effects, and strategies for mitigation,” Journal of Environmental Studies, 29(1), pp. 1–15. Available at: https://doi.org/10.21608/JESJ.2023.182647.1037.
  • Sejian, V. et al. (2015) “Introduction to concepts of climate change impact on livestock and its adaptation and mitigation,” in V. Sejian et al. (eds.) Climate change impact on livestock: Adaptation and mitigation. New Delhi: Springer, pp. 1–23. Available at: https://doi.org/10.1007/978-81-322-2265-1_1.
  • Shah, G.A. et al. (2018) “Bedding additives reduce ammonia emission and improve crop N uptake after soil application of solid cattle manure,” Journal of Environmental Management, 209, pp. 195–204. Available at: https://doi.org/10.1016/j.jenvman.2017.12.035.
  • Składanowska-Baryza, J. (2017) “Królik – znaczenie gospodarcze, dobór ras i linii do produkcji mięsa [Rabbit – economic importance, selection of breeds and meat production lines],” Wiadomości Zootechniczne, 55, pp. 13–23. Available at: https://wz.izoo.krakow.pl/files/WZ_2017_3_art03.pdf (Accessed: April 22, 2024).
  • Song, Z. et al. (2023) “Fungal aerosols in rabbit breeding environment: Metagenetic insight into PM2.5 based on third-generation sequencing technology,” Environmental Research, 224, 115480. Available at: https://doi.org/10.1016/j.envres.2023.115480.
  • Stavi, I. and Lal, R. (2013) “Agriculture and greenhouse gases, a common tragedy. A review,” Agronomy for Sustainable Development, 33, pp. 275–289. Available at: https://doi.org/10.1007/s13593-012-0110-0.
  • Szymula, A. et al. (2021) “The use of natural sorbents to reduce ammonia emissions from cattle faeces,” Agronomy, 11, 2543. Available at: https://doi.org/10.3390/agronomy11122543.
  • Tonhauzer, K., Zetochová, L. and Szemesová, J. (2023) “The emission from rabbits breeding in Slovakia,” Agriculture, 13, 1468. Available at: https://doi.org/10.3390/agriculture13081468.
  • Vinci, G. and Rapa, M. (2019) “Hydroponic cultivation: Life cycle assessment of substrate choice,” British Food Journal, 121(8), pp. 1801–1812. Available at: https://doi.org/10.1108/BFJ-02-2019-0112.
  • Wang, M. et al. (2022) “Comparison of composting factors, heavy metal immobilization, and microbial activity after biochar or lime application in straw-manure composting,” Bioresource Technology, 363, 127872. Available at: https://doi.org/10.1016/j.biortech.2022.127872.
  • Wlazło, Ł. et al. (2016) “Removal of ammonia from poultry manure by aluminosilicates,” Journal of Environmental Management, 183(3), pp. 722–725. Available at: https://doi.org/10.1016/j.jenvman.2016.09.028.
  • Zhang, R.H., Duan, Z.-Q. and Li, Z.-G. (2012) “Use of spent mushroom substrate as growing media for tomato and cucumber seedlings,” Pedosphere, 22(3), pp. 333–342. Available at: https://doi.org/10.1016/S1002-0160(12)60020-4.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0664e72b-fded-47db-aa82-4381b3cdbf76
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.