PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modeling and simulation of a tracked mobile inspection robot in Matlab and V-REP software

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents modeling and simulation of a tracked mobile robot for pipe inspection with usage of MATLAB and V-REP software. Mechanical structure of the robot is described with focus on pedipulators, used to change pose of track drive modules to adapt to different pipe sizes and shapes. Modeling of the pedipulators is shown with application of MATLAB environment. The models are verified using V-REP and MATLAB co-simulations. Finally, operation of a prototype is shown on a test rig. The robot utilizes joint space trajectories, computed with usage of the mathematical models of the pedipulators.
Twórcy
autor
  • Department of Robotics and Mechatronics, AGH University of Science and Technology, Cracow, Poland.
autor
  • Department of Robotics and Mechatronics, AGH University of Science and Technology, Cracow, Poland.
  • Faculty of Mechanical Engineering and Robotics AGH University of Science and Technology, Poland.
autor
  • Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, Poland.
Bibliografia
  • [1] S.R.S. Buss, Introduction to inverse kinematics with jacobian transpose, pseudoinverse and damped least squares methods, Univ. California, San Diego, Typeset Manuscr., vol. 132, 2009, 1–19. DOI: 10.1016/j.neuroscience.2005.01.020.
  • [2] M. Ciszewski, T. Buratowski, M. Giergiel, P. Malka, K. Kurc, “Virtual Prototyping, Design and Analysis of an in-Pipe Inspection Mobile Robot”, J. Theor. Appl. Mech., vol. 52, 2014, 417–429.
  • [3] M. Ciszewski, M. Waclawski, T. Buratowski, M. Giergiel, K. Kurc, “Design, Modelling and Laboratory Testing of a Pipe Inspection Robot”, Arch. Mech. Eng., vol. 62, 2015, 395–408. DOI: 10.1515/meceng-2015-0023.
  • [4] P. Corke, Robotics, Vision and Control: Fundamental Algorithms in MATLAB, Springer, 2011, ISBN 978-3-642-20144-8 DOI: 10.1007/978-3-642-20144-8
  • [5] I. Dulęba, M. Opałka, “A comparison of Jacobian-based methods of inverse kinematics for serial robot manipulators”, Int. J. Appl. Math. Comput. Sci., vol. 23, 2013, 373–382.DOI: 10.2478/amcs-2013-0028.
  • [6] J. Giergiel, M. Giergiel, T. Buratowski, M. Ciszewski, „Pedipulator’s mechanism for positioning of a track drive module, esp. for mobile robots”, Patent application (description of the invention) no. PL 406656, 2015 (in Polish).
  • [7] P. Hansen, H. Alismail, P. Rander, B. Browning, “Visual mapping for natural gas pipe inspection”, Int. J. Rob. Res., vol. 34, 2015, 532–558. DOI: 10.1177/0278364914550133.
  • [8] J. Khalilov, A.T. Kutay, “Interfacing Matlab/Simulink with V – REP for A Controller Design for Quadrotor”, Int. J. Eng. Res. Rev., no. 3 , 2015, 42–49.
  • [9] K. Kozłowski, P. Dutkiewicz, W. Wróblewski, Modelowanie i sterowanie robotów (Control and modelling of robots), 1st ed., PWN: Warszawa, 2012. (in Polish)
  • [10] A. Nayak, S.K. Pradhan, “Design of a new inpipe inspection robot”, Procedia Eng., no. 97, 2014, 2081–2091. DOI: 10.1016/j.proeng.2014.12.451.
  • [11] Y. Sharma, K. Deepak, P. Kumar, A. Chauhan, “Blockage removal and RF controlled pipe inspection robot (BRICR)”, Int. J. Electron. Telecommun., vol. 4, 2015, 62–68.
  • [12] Coppelia Robotics, V-REP Virtual Robot Experimental Platform, 2016, http://www.coppeliarobotics.com
  • [13] Inuktun, Inuktun crawler vehicles, 2015, http://www.inuktun.com/crawler-vehicles
  • [14] ULC, ULC’S Micro-magnetic crawler, 2014,http://ulcrobotics.com
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0663e21b-c292-4143-8baf-e807acb64f51
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.