Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Algorytm FPA i jego zastosowanie do projektu i optymalizacji sterownika do silnika bezszczotkowego silnika BLDC
Języki publikacji
Abstrakty
This paper proposes the newest modified version of the flower pollination algorithm (FPA) named the parallel flower pollination algorithm (PFPA) and its application to design the optimal fractional-order proportional-integral-derivative (FOPID) controller for the fractional-order brushless direct current (BLDC) motor speed control system. The proposed PFPA is based on the time sharing strategy employing the multiple point single strategy (MPSS) method which is efficiently run on a single CPU platform. The search performance of the PFPA over the original FPA investigated against 10 benchmark functions is presented in this paper. For the fractional-control application based on the modern optimization, results of the FOPID controller designed by the PFPA for the BLDC motor speed control system are compared with those of the integer-order PID (IOPID) controller designed by the PFPA. As results, it was found that the BLDC motor speed controlled system with the FOPID controller designed by the proposed PFPA can provide very satisfactory responses superior to that with the IOPID controller designed by the FPA, significantly.
W artykule opisano nową zmodyfikowana wersję algorytmu zapytania FPA i jego zastosowanie do projektu sterownika do bezszczotkowego silnika BLDC. Zaprezentowano benchmark dziesięciu funkcji i potwierdzono lepsze parametry w porównaniu z konwencjonalnym sterownikiem IOPID.
Wydawca
Czasopismo
Rocznik
Tom
Strony
78--83
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
autor
- Department of Electrical Engineering, Faculty of Engineering, Southeast Asia University (SAU), 19/1 Petchkasem Rd, Nonghkaem, Bangkok, 10160, Thailand
autor
- Department of Electrical Engineering, Faculty of Engineering, Southeast Asia University (SAU), 19/1 Petchkasem Rd, Nonghkaem, Bangkok, 10160, Thailand
Bibliografia
- [1] Zakian V., Control Systems Design: A New Framework, Springer-Verlag, (2005)
- [2] Yang X.S., Engineering Optimization: An Introduction with Metaheuristic Applications, John Wiley & Sons, (2010)
- [3] Talbi E.G., Metaheuristics form Design to Implementation, John Wiley & Sons, Hoboken, (2009)
- [4] Yang X.S., Flower Pollination Algorithm for Global Optimization, Unconventional Computation and Natural Computation, Lecture Notes in Computer Science, 7445 (2012), 240-249
- [5] Yang X.S., Karamanoglua M., He X., Multi-Objective Flower Algorithm for Optimization, Procedia Computer Science, 18 (2013), 861-868
- [6] He X., Yang X.S., Karamanoglu M., Zhao Y., Global Convergence Analysis of the Flower Pollination Algorithm: a Discretetime Markov Chain Approach, Proceedings of the International Conference on Computational Science (ICCS2017), (2017), 1354-1363
- [7] Chiroma H., Shuib N.L.M., Muaz S.A., Abubakar A.I., Ila L.B., Maitama J.Z., A Review of the Applications of Bio-Inspired Flower Pollination Algorithm, Procedia Computer Science, 62 (2015), 435-441
- [8] Alyasseri Z.A.A., Khader A.T., Al-Betar M.A., Awadallah M.A., Yang X.S., Variants of the Flower Pollination Algorithm: a Review, Nature-Inspired Algorithms and Applied Optimization: Studies in Computational Intelligence, 744 (2018), 91-118
- [9] Metwalli M.A.B., Hezam I., Yardım D., Ozkan I.A., Saritas I., Aslam D.M., A Modified Fower Pollination Algorithm for Fractional Programming Problems, International Journal of Intelligent Systems and Applications in Engineering, 3 (2015)
- [10] Abdel-Baset M., Hezam I.M., An Efective Hybrid Fower Pollination and Genetic Algorithm for Constrained Optimization Problems, Advanced Engineering Technology and Application, 4 (2015), 27-34
- [11] Podlubny I., Fractional-Order Systems and Fractional-Order Controllers, UEF-03-94, Slovak Academy of Sciences, Kosice, (1994)
- [12] Podlubny I., Fractional-Order Systems and PID-Controllers, IEEE Transactions on Automatic Control, 44 (1999), 208-214
- [13] Monje C.A., Chen Y.Q., Vinagre B.M., Xue D., Feliu V., Fractional-order Systems and Controls: Fundamentals and Applications, Springer-Verlag London, (2010)
- [14] Valério D., Costa J., A Review of Tuning Methods for Fractional PIDs, Proceedings of the 4th IFAC Workshop on Fractional Differentiation and Its Applications, (2010)
- [15] Shah P., Agashe A., Review of Fractional PID Controller. Mechatronics, 38 (2016), 29-41
- [16] Chen Y. Q., Petráš I., Dingyü X., Fractional Order Control - A Tutorial, Proceedings of the American Control Conference, (2009), 1397-1411
- [17] Kluabwang J., Puangdownreong D., Sujitjorn S., Multi-Path Aaptive Tabu Search for a Vehicle Control Problem, Journal of Applied Mathematics, (2012), 1-20
- [18] Puangdownreong D., Kluabwang J., Sujitjorn S., Multipath Adaptive Tabu Search: its Convergence and Application to Identification Problem, Journal of Physical Sciences, 7 (2012), 5288-5296
- [19] Nguyen T.T., Shieh C.S., Horng M.F., Dao T.K., Ngo T.G., Parallelized Flower Pollination Algorithm with a Communication Strategy, Proceedings of the 7th International Conference on Knowledge and Systems Engineering (KSE), (2015), 103-107
- [20] Ali M.M., Khompatraporn C., Zabinsky Z.B., A Numerical Evaluation of Several Stochastic Algorithms on Selected Continuous Global Optimization Test Problems, Journal of Global Optimization, 31 (2005), 635-672
- [21] Jamil M., Yang X.S., A Literature Survey of Benchmark Functions for Global Optimization Problems, International Journal of Mathematical Modelling and Numerical Optimisation, 4 (2013), 150-194
- [22] Miller K.S., Ross B., An Introduction to the Fractional Calculus and Fractional Differential Equations, Willey, New York, (1993)
- [23] Podlubny I., Fractional Differential Equations, Academic Press. San Diego, (1999)
- [24] Popenda A., A Control Strategy of a BLDC Motor, Przeglad Elektrotechniczny, ISSN 0033-2097, R. 89 NR 12/2013, (2013), 188-191
- [25] Popenda A., Modelling of Multi-Phase BLDC Motor, Przeglad Elektrotechniczny, ISSN 0033-2097, R. 94 NR 1/2018, (2018), 85-88
- [26] Popenda A., Modelling of BLDC Motor Energized by Different Converter Systems, Przeglad Elektrotechniczny, ISSN 0033-2097, R. 94 NR 1/2018, (2018), 81-84
- [27] Popenda A., Nowak M., Modelling of BLDC Motor with Different Fashions of Winding Connection, Przeglad Elektrotechniczny, ISSN 0033-2097, R. 95 NR 2/2019, (2019), 92-95
- [28] Khluabwannarat P., Nawikavatan A. Puangdownreong D., Fractional-Order Model Parameter Identification of BLDC Motor by Flower Pollination Algorithm, WSEAS Transactions on Systems and Control, 13 (2018), 573-579
- [29] Pourhossein H., Zare A., Monfared M., Hybrid Modeling and PID-PSO Control of Buck-Boost Chopper, Przeglad Elektrotechniczny, ISSN 0033-2097, R. 88 NR 8/2012, (2012), 187-191
- [30] Azzouz S., Messalti S., Harrag A., Innovative PID-GA MPPT Controller for Extraction of Maximum Power From Variable Wind Turbine, Przeglad Elektrotechniczny, ISSN 0033-2097, R. 95 NR 8/2019, (2019), 115-120
- [31] Thammarat C., Puangdownreong D., CS-Based Optimal PID Controller Design for Induction Motor Speed Control System, International Journal on Electrical Engineering and Informatics, 11 (2019), 638-661
- [32] Jitwang T., Puangdownreong D., Application of Cuckoo Search to Robust PIDA Controller Design for Liquid-Level System, International Journal of Innovative Computing, Information and Control, 16 (2020), 189-205
- [33] Tepljakov A., Petlenkov E., Belikov J., FOMCON: Fractional-Order Modeling and Control Toolbox for MATLAB, Proceedings of the 18th International Conference on Mixed Design of Integrated Circuits and Systems (MIXDES ’11), (2011), 684-689
- [34] Tepljakov A., Petlenkov E., Belikov J., FOMCON: a MATLAB Toolbox for Fractional-Order System Identification and Control, International Journal of Microelectronics and Computer Science, 2 (2011), 51-62
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-066254ac-28f5-4fb7-af03-46e989ccaad3