Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this work, using the two-dimensional finite difference time domain method, we are theoretically studying the optical properties of a two-dimensional photonic crystal biosensor based on silicon rods arranged as a square structure in an air bottom with two waveguides and a nanocavity. For this purpose, six different cells are infiltrated into the point defect. These six cells are Jurkat, HeLa, PC-12, MDA-MB-231, MCF-7, and basal cells. As a result, we have successfully detected cancer and benign cases of these cells through resonance peaks in the transmission spectrum. We evaluated the sensitivity, quality factor, detection limit, and figure of merit at different values for sensing region radius for optimization purposes. We report that we observed the maximum sensitivity of 1350 nm/RIU at 0.15 μm for the basal cell. Finally, the proposed biosensor can be a miniaturized structure with extreme sensitivity in cancer cell detection models.
Czasopismo
Rocznik
Tom
Strony
407--418
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
autor
- LaMEE, Department of Physics, Faculty of Sciences Semlalia, Cadi Ayyad University, P.O. Box 2390, 40000 Marrakech, Morocco
autor
- LaMEE, Department of Physics, Faculty of Sciences Semlalia, Cadi Ayyad University, P.O. Box 2390, 40000 Marrakech, Morocco
autor
- LaMEE, Department of Physics, Faculty of Sciences Semlalia, Cadi Ayyad University, P.O. Box 2390, 40000 Marrakech, Morocco
autor
- LaMEE, Department of Physics, Faculty of Sciences Semlalia, Cadi Ayyad University, P.O. Box 2390, 40000 Marrakech, Morocco
autor
- LaMEE, Department of Physics, Faculty of Sciences Semlalia, Cadi Ayyad University, P.O. Box 2390, 40000 Marrakech, Morocco
autor
- LaMEE, Department of Physics, Faculty of Sciences Semlalia, Cadi Ayyad University, P.O. Box 2390, 40000 Marrakech, Morocco
Bibliografia
- [1] JOANNOPOULOS J.D., JOHNSON S.G., WINN J.N., MEADE R.D., Photonic Crystals: Molding the Flow of Light, Princeton University Press, 2011.
- [2] HO K.M., CHAN C.T., SOUKOULIS C.M., Existence of a photonic gap in periodic dielectric structures, Physical Review Letters 65(25), 1990: 3152-3155. https://doi.org/10.1103/PhysRevLett.65.3152
- [3] BERGER V., From photonic band gaps to refractive index engineering, Optical Materials 11(2-3), 1999: 131-142. https://doi.org/10.1016/S0925-3467(98)00039-1
- [4] FENZL C., HIRSCH T., WOLFBEIS O.S., Photonic crystals for chemical sensing and biosensing, Angewandte Chemie 53(13), 2014: 3318-3335. https://doi.org/10.1002/anie.201307828
- [5] NAIR R.V., VIJAYA R., Photonic crystal sensors: An overview, Progress in Quantum Electronics 34(3), 2010: 89-134.
- [6] TAYA S.A., SHAHEEN S.A., Binary photonic crystal for refractometric applications (TE case), Indian Journal of Physics volume 92(4), 2018: 519-527. https://doi.org/10.1007/s12648-017-1130-z
- [7] SHAHEEN S.A., TAYA S.A., Propagation of p-polarized light in photonic crystal for sensor application, Chinese Journal of Physics 55(2), 2017: 571-582. https://doi.org/10.1016/j.cjph.2016.12.005
- [8] YEO J.C., LIM C.T., Emerging flexible and wearable physical sensing platforms for healthcare and biomedical applications, Microsystems & Nanoengineering 2, 2016: 16043. https://doi.org/10.1038/micronano.2016.43
- [9] MALININ A.V., ZANISHEVSKAJA A.A., TUCHIN V.V., SKIBINA Y.S., SILOKHIN I.Y., Photonic crystal fibers for food quality analysis, Proceedings of the SPIE, Vol. 8427, Biophotonics: Photonic Solutions for Better Health Care III, 2012: 842746. https://doi.org/10.1117/12.924096
- [10] LIU C., ZHANG L., ZHANG X., JIA Y., DI Y., GAN Z., Bioinspired free-standing one-dimensional photonic crystals with janus wettability for water quality monitoring, ACS Applied Materials & Interfaces 12(36), 2020: 40979-40984. https://doi.org/10.1021/acsami.0c13618
- [11] TAYA S.A., SHAHEEN S.A., ALKANOO A.A., Photonic crystal as a refractometric sensor operated in reflection mode, Superlattices and Microstructures 101, 2017: 299-305. https://doi.org/10.1016/j.spmi.2016.11.057
- [12] LIU H., LI Z., SHEN R., LI Z., YANG Y., YUAN Q., Point-of-care pathogen testing using photonic crystals and machine vision for diagnosis of urinary tract infections, Nano Letters 21(7), 2021: 2854-2860. https://doi.org/10.1021/acs.nanolett.0c04942
- [13] FU F., SHANG L., ZHENG F., CHEN Z., WANG H., WANG J., GU Z., ZHAO Y., Cells cultured on core−shell photonic crystal barcodes for drug screening, ACS Applied Materials & Interfaces 8(22), 2016: 13840-13848. https://doi.org/10.1021/acsami.6b04966
- [14] CHOPRA H., KALER R., PAINAM B., Photonic crystal waveguide-based biosensor for detection of diseases, Journal of Nanophotonics 10(3), 2016: 036011. https://doi.org/10.1117/1.JNP.10.036011
- [15] TAYA S.A., COLAK I., SUTHAR B., RAMAHI O.M., Cancer cell detector based on a slab waveguide of anisotropic, lossy, and dispersive left-handed material, Applied Optics 60(27), 2021: 8360-8367. https://doi.org/10.1364/AO.437738
- [16] BUSWELL S.C., WRIGHT V.A., BURIAK J.M., VAN V., EVOY S., Specific detection of proteins using photonic crystal waveguides, Optics Express 16(20), 2008: 15949-15957. https://doi.org/10.1364/OE.16.015949
- [17] SKIVESEN N., CANNING J., KRISTENSEN M., MARTELLI C., TETU A., FRANDSEN L.H., Photonic crystal waveguide-based biosensor, Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (CD), Optica Publishing Group, 2008, paper OTuK2.
- [18] BAYINDIR M., TEMELKURAN B., OZBAY E., BAYINDIR M., TEMELKURAN B., OZBAY E., Photonic-crystal-based beam splitters, 77(24), 2000: 3902-3904. https://doi.org/10.1063/1.1332821
- [19] DE VOS K., BARTOLOZZI I., SCHACHT E., BIENSTMAN P., BAETS R., Silicon-on-Insulator microring resonator for sensitive and label-free biosensing, Optics Express 15(12), 2007: 7610-7615. https://doi.org/10.1364/OE.15.007610
- [20] CHAO C.Y., FUNG W., GUO L.J., Polymer microring resonators for biochemical sensing applications, IEEE Journal of Selected Topics in Quantum Electronics 12(1), 2006: 134-142. https://doi.org/10.1109/JSTQE.2005.862945
- [21] CHAO C.Y., GUO L.J., Biochemical sensors based on polymer microrings with sharp asymmetrical resonance, Applied Physics Letters 83(8), 2003), 1527-1529. https://doi.org/10.1063/1.1605261
- [22] SHARMA V., KALYANI V.L., UPADHYAY S., 2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT), 2017. https://doi.org/10.1109/ICCCNT.2017.8204043
- [23] BOUGRIOU F., BOUCHEMAT T., BOUCHEMAT M., PARAIRE N., Optofluidic sensor using two-dimensional photonic crystal waveguides, The European Physical Journal Applied Physics 62(1), 2013: 11201. https://doi.org/10.1051/epjap/2013110442
- [24] HUANG L., TIAN H., YANG D., ZHOU J., LIU Q., ZHANG P., JI Y., Optimization of figure of merit in label-free biochemical sensors by designing a ring defect coupled resonator, Optics Communications 332, 2014: 42-49. https://doi.org/10.1016/j.optcom.2014.06.033
- [25] ARAFA S., BOUCHEMAT M., BOUCHEMAT T., BENMERKHI A., HOCINI A., Infiltrated photonic crystal cavity as a highly sensitive platform for glucose concentration detection, Optics Communications 384, 2017: 93-100. https://doi.org/10.1016/j.optcom.2016.10.019
- [26] DIVYA J., SELVENDRAN S., SIVANANTHA RAJA A., Photonic crystal-based optical biosensor: A brief investigation, Laser Physics 28(6), 2018: 066206. https://doi.org/10.1088/1555-6611/aab7d2
- [27] ANAMORADI A., FASIHI K., A highly sensitive optofluidic-gas sensor using two dimensional photonic crystals, Superlattices and Microstructures 125, 2019: 302-309. https://doi.org/10.1016/j.spmi.2018.11.019
- [28] MOHAMMADI M., SEIFOURI M., Numerical investigation of photonic crystal ring resonators coupled bus waveguide as a highly sensitive platform, Photonics and Nanostructures - Fundamentals and Applications 34, 2019: 11-18. https://doi.org/10.1016/j.photonics.2019.02.002
- [29] BENMERKHI A., BOUCHEMAT M., BOUCHEMAT T., Computational study of photonic crystal resonator for biosensor application, Frequenz 73(9-10), 2019: 307-316. https://doi.org/10.1515/freq-2019-0025
- [30] MOHAMMED N.A., HAMED M.M., KHALAF A.A.M., ALSAYYARI A., EL-RABAIE S., High-sensitivity ultra-quality factor and remarkable compact blood components biomedical sensor based on nanocavity coupled photonic crystal, Results in Physics 14, 2019: 102478. https://doi.org/10.1016/j.rinp.2019.102478
- [31] LU X., ZHENG G.G., ZHOU P., High performance refractive index sensor with stacked two-layer resonant waveguide gratings, Results in Physics 12, 2019: 759-765. https://doi.org/10.1016/j.rinp.2018.12.048
- [32] SHI A., GE R., LIU J., Refractive index sensor based on photonic quasi-crystal with concentric ring microcavity, Superlattices and Microstructures 133, 2019: 106198. https://doi.org/10.1016/j.spmi.2019.106198
- [33] SIEGEL R.L., MILLER K.D., FUCHS H.E., JEMAL A., Cancer statistics, 2022, CA: A Cancer Journal for Clinicians 72(1), 2022: 7-33. https://doi.org/10.3322/caac.21708
- [34] RAMANUJAM N.R., AMIRI I.S., TAYA S.A., OLYAEE S., UDAIYAKUMAR R., PASUMPON PANDIAN A., WILSON K.S.J., MAHALAKSHMI P., YUPAPIN P.P., Enhanced sensitivity of cancer cell using one dimensional nano composite material coated photonic crystal, Microsystem Technologies 25, 2019: 189-196. https://doi.org/10.1007/s00542-018-3947-6
- [35] ALMAWGANI A.H.M., DAHER M.G., TAYA S.A., COLAK I., PATEL S.K., RAMAHI O.M., Highly sensitive nano-biosensor based on a binary photonic crystal for cancer cell detection, Optical and Quantum Electronics 54, 2022: 554. https://doi.org/10.1007/s11082-022-03978-0
- [36] MIYAN H., AGRAHARI R., GOWRE S.K., MAHTO M., JAIN P.K., Computational study of a compact and high sensitive photonic crystal for cancer cells detection, IEEE Sensors Journal 22(4), 2022: 3298-3305. https://doi.org/10.1109/JSEN.2022.3141124
- [37] PARVIN T., AHMED K., ALATWI A.M., RASHED A.N.Z., Differential optical absorption spectroscopy-based refractive index sensor for cancer cell detection, Optical Review 28(1), 2021: 134-143. https://doi.org/10.1007/s10043-021-00644-w
- [38] SHI S., CHEN C., PRATHER D.W., Plane-wave expansion method for calculating band structure of photonic crystal slabs with perfectly matched layers, Journal of the Optical Society of America A 21(9), 2004: 1769-1775. https://doi.org/10.1364/JOSAA.21.001769
- [39] BERENGER J.-P., A perfectly matched layer for the absorption of electromagnetic waves, Journal of Computational Physics 114(2), 1994: 185-200.
- [40] GHORBANI S., SADEGHI M., ADELPOUR Z., A highly sensitive and compact plasmonic ring nano-biosensor for monitoring glucose concentration, Laser Physics 30(2), 2020: 026204. https://doi.org/10.1088/1555-6611/ab5797
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-065c0e82-1564-4106-bd72-7bf209ba2210