Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The present study investigates the prediction accuracy of standalone Reduced Error Pruning Tree model and its integration with Bagging (BA), Dagging (DA), Additive Regression (AR) and Random Committee (RC) for drought forecasting on time scales of 3, 6, 12, 48 months ahead using Standard Precipitation Index (SPI), which is among the most common criteria for testing drought prediction, at Kermanshah synoptic station in western Iran. To this end, monthly data obtained from a 31-year period record including rainfall, maximum and minimum temperatures, and maximum and minimum relative humidtty rates were considered as the required input to predict SPI. In addition, different inputs were combined and constructed to determine the most effective parameter. Finally, the obtained results were validated using visual and quantitative criteria. According to the results, the best input combination comprised both meteorological variable and SPI along with lag time. Although hybrid models enhanced the results of standalone models, the accuracy of the best performing models could vary on different SPI time scales. Overall, BA, DA and RC models were much more effective than AR models. Moreover, RMSE value increased from SPI (3) to SPI (48), indicating that performance modeling would become much more challenging and complex on higher time scales. Finally, the performance of the newly developed models was compared with that of conventional and most commonly used Support Vector Machine and Adaptive Neuro-Fuzzy Inference System (ANFIS) models, regarded as the benchmark. The results revealed that all the newly developed models were characterized by higher prediction power than ANFIS and ANN.
Wydawca
Czasopismo
Rocznik
Tom
Strony
697--712
Opis fizyczny
Bibliogr. 103 poz.
Twórcy
autor
- Engineering and Management of Water Resources, Department of Civil Engineering, Maragheh Branch, Islamic Azad University, Maragheh, Iran
autor
- Civil Engineering, Department of Civil Engineering, Urmia Branch, Islamic Azad University, Urmia, Iran
Bibliografia
- 1. Abdar M, Zomorodi-Moghadam M, Zhou X, Gururajan R, Tao X, Barua PD, Gururajan R (2020) A new nested ensemble technique for automated diagnosis of breast cancer. Pattern Recognit Lett 132:123–131. https://doi.org/10.1016/j.patrec.2018.11.004
- 2. American Meteorological Society (1997) Meteorological drought—Policy statement. Bull Am Meteorol Soc 78:847–849
- 3. Ashraf Vaghefi S, Mousavi SJ, Abbaspour KC, Srinivasan R, Yang H (2014) Analyses of the impact of climate change on water resources components, drought and wheat yield in semiarid regions: Karkheh river basin in Iran. Hydrol Process 28(4):2018–2032
- 4. Bacanli UG, Firat M, Dikbas F (2009) Adaptive neuro-fuzzy inference system for drought forecasting. Stoch Environ Res Risk Assess 23(8):1143–1154
- 5. Barua S, Ng A, Perera B (2012) Artificial neural network–based drought forecasting using a nonlinear aggregated drought index. J Hydrol Eng 17(12):1408–1413
- 6. Belayneh A, Adamowski J, Khalil B, Quilty J (2016) Coupling machine learning methods with wavelet transforms and the bootstrap and boosting ensemble approaches for drought prediction. Atmos Res 172:37–47
- 7. Bordi I, Sutera A (2001) Fifty years of precipitation: some spatially remote teleconnnections. Water Resour Manag 15(4):247–280
- 8. Bui T, Khosravi K, Tiefenbacher J, Nguyen H, Kazakis N (2020) Improving prediction of water quality indices using novel hybrid machine-learning algorithms. Sci Total Environ 721:137612
- 9. Byzedi M, Siosemardeh M, Rahimi A, Mohammadi K (2012) Analysis of hydrological drought on Kurdistan province. Aust J Basic Appl Sci 6(7):255–259
- 10. Cancelliere A, Di Mauro G, Bonaccorso B, Rossi G (2007) Drought forecasting using the standardized precipitation index. Water Resour Manag 21(5):801–819
- 11. Che H, Wang J (2020) A two-timescale duplex neurodynamic approach to mixed-integer optimization. IEEE Trans Neural Netw Learn Syst 32(1):36–48. https://doi.org/10.1109/TNNLS.2020.2973760
- 12. Chen W, Zhao X, Tsangaratos P, Shahabi H, Ilia I, Xue W, Wang X, Ahmad BB (2020) Evaluating the usage of tree-based ensemble methods in groundwater spring potential mapping. J Hydrol 583:124602. https://doi.org/10.1016/j.jhydrol.2020.124602
- 13. Chen X, Quan Q, Zhang K, Wei J (2021) Spatiotemporal characteristics and attribution of dry/wet conditions in the Weihe River Basin within a typical monsoon transition zone of East Asia over the recent 547 years. Environ Model Softw 143:105116. https://doi.org/10.1016/j.envsoft.2021.105116
- 14. Chen Z, Liu Z, Yin L, Zheng W (2022) Statistical analysis of regional air temperature characteristics before and after dam construction. Urban Clim 41:101085. https://doi.org/10.1016/j.uclim.2022.101085
- 15. Deo R, Sahin M (2015) Application of the extreme learning machine algorithm for the prediction of monthly effective drought index in eastern Australia. Atmos Res 153:512–525
- 16. Doesken NJ, Garen D (1991) Drought monitoring in the western United States using a surface water supply index. In: Seventh conference on applied climatology, pp 266–269
- 17. Friedman JH, Stuetzle W (1981) Projection pursuit regression. J Am Stat Assoc 76:817–823. https://doi.org/10.1080/01621459.1981.10477729
- 18. Ghiasi-Freez J, Kadkhodaie-Ilkhchi A, Ziaii M (2012) Improving the accuracy of flow units prediction through two committee machine models: an example from the south pars gas field, Persian gulf basin. Iran Comput Geosci 46:10–23. https://doi.org/10.1016/j.cageo.2012.04.006
- 19. Han P, Wang PX, Zhang SY (2010) Drought forecasting based on the remote sensing data using ARIMA models. Math Comput Model 51(11–12):1398–1403
- 20. Hayes M (1999) Drought indices. In: Drought happen climate impacts specialist
- 21. He Y, Dai L, Zhang H (2020) Multi-branch deep residual learning for clustering and beamforming in user-centric network. IEEE Commun Lett 24(10):2221–2225. https://doi.org/10.1109/LCOMM.2020.3005947
- 22. He S, Guo F, Zou Q, HuiDing (2021) MRMD2.0: a python tool for machine learning with feature ranking and reduction. Curr Bioinf 15(10):1213–1221. https://doi.org/10.2174/1574893615999200503030350
- 23. Hussain D, Khan AA (2020) Machine learning techniques for monthly river flow forecasting of Hunza River Pakistan. Earth Sci Inform. https://doi.org/10.1007/s12145-020-00450-z
- 24. Ionita M, Scholz P, Chelcea S (2016) Assessment of droughts in Romania using the standardized precipitation index. Nat Hazard 81(3):1483–1498
- 25. Kadam A, Rajasekhar M, Umrikar B, Bhagat V, Wagh V, Sankua RN (2021) Land suitability analysis for afforestation in semi-arid watershed of Western Ghat, India: a groundwater recharge perspective. Geol Ecol Landsc 5(2):136–148. https://doi.org/10.1080/24749508.2020.1833643
- 26. Kamali B, Abbaspour KC, Lehmann A, Wehrli B, Yang H (2015) Identification of spatiotemporal patterns of biophysical droughts in semi-arid region–a case study of the Karkheh river basin in Iran. Hydrol Earth Syst Sci Discuss 12(6):5187–5217
- 27. Kamali B, Houshmand Kouchi D, Yang H, Abbaspour K (2017) Multilevel drought hazard assessment under climate change scenarios in semi-arid regions—a case study of the Karkheh river basin in Iran. Water 9(4):241
- 28. Kargar K, Safari MJS, Khosravi K (2021) Weighted instances handler wrapper and rotation forest-based hybrid algorithms for sediment transport modeling. J Hydrol 598:126452
- 29. Khan N, Sachindra DA, Shahid S, Ahmed K, Shiru MS, Nawaz N (2020) Prediction of droughts over Pakistan using machine learning algorithms. Adv Water Resour 139:103562
- 30. Khosravi K, Pham BT, Chapi K, Shirzadi A, Shahabi H, Revhaug I (2018a) A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz watershed, northern Iran. Sci Total Environ 627:744–755
- 31. Khosravi K, Mao L, Kisi O, Yaseen ZM, Shahid S (2018b) Quantifying hourly suspended sediment load using data mining models: case study of a glacierized Andean catchment in Chile. J Hydrol 567:165–179
- 32. Khosravi K, Mao L, Kisi O, Shahid S, Yaseen Z (2019) Quantifying hourly suspended sediment load using data mining models: case study of a glacierized Andean catchment in Chile. J Hydrol 567:165–179
- 33. Khosravi K, Barzegar R, Miraki S, Adamowski J, Daggupati P, Pham B (2020a) Stochastic modeling of groundwater fluoride contamination: introducing lazy learners. Groundwater 58(5):723–734
- 34. Khosravi K, Cooper JR, Daggupati P, Pham B, Bui D (2020b) Bedload transport rate prediction: application of novel hybrid data mining techniques. J Hydrol 585:124774
- 35. Khosravi K, Khozani Z, Mao L (2021a) A comparison between advanced hybrid machine learning algorithms and empirical equations applied to abutment scour depth prediction. J Hydrol 596:126100
- 36. Khosravi K, Golkarian A, Booij MJ, Barzegar R, Sun W, Yaseen ZM (2021b) Improving daily stochastic streamflow prediction: comparison of novel hybrid data mining algorithms. Hydrol Sci J 66(9):1457–1474. https://doi.org/10.1080/02626667.2021.1928673
- 37. Khosravi K, Khozani ZS, Cooper JR (2021c) Predicting stable gravel-bed river hydraulic geometry: a test of novel, advanced, hybrid data mining algorithms. Environ Model Softw 144:105165
- 38. Khosravi K, Miraki MS, Saco PM, Farmani R (2021ed) Short-term river streamflow modeling using ensemble-based additive learner approach. J Hydro-Environ Res 39:81–91
- 39. Khosravi K, Panahi M, Golkarian A, Keesstra SD, Saco PM, Bui DT, Lee S (2021fe) Convolutional neural network approach for spatial prediction of flood hazard at national scale of Iran. J Hydrol 591:125552
- 40. Khozani Z, Khosravi K, Torabi M, Mosavi A, Rezaei B, Tabczuk T (2020) Shear stress distribution prediction in symmetric compound channels using data mining and machine learning models. Front Struct Civ Eng 14(5):1097–1109
- 41. Kisi O, Gorgij AD, Zounemat-Kermani M, Mahdavi-Meymand A, Kim S (2019) Drought forecasting using novel heuristic methods in a semi-arid environment. J Hydrol 578:124053
- 42. Lalitha S, Gupta D, Zakariah M, Alotaibi YA (2020) Investigation of multilingual and mixed-lingual emotion recognition using enhanced cues with data augmentation. Appl Acoust 170:107519. https://doi.org/10.1016/j.apacoust.2020.107519
- 43. Lee J, Wang W, Harrou F, Sun Y (2020) Reliable solar irradiance prediction using ensemble learning-based models: a comparative study. Energy Convers Manag 208:112582. https://doi.org/10.1016/j.enconman.2020.112582
- 44. Leilah AA, Al-Khateeb SA (2005) Statistical analysis of wheat yield under drought conditions. J Arid Environ 61(3):483–496
- 45. Li S, Bhattarai R, Cooke RA, Verma S, Huang X, Markus M, Christianson L (2020) Relative performance of different data mining techniques for nitrate concentration and load estimation in different type of watersheds. Environ Pollut. https://doi.org/10.1016/j.envpol.2020.114618
- 46. Liang X, Lu T, Yishake G (2022) How to promote residents’ use of green space: an empirically grounded agent-based modeling approach. Urban For Urban Green 67:127435. https://doi.org/10.1016/j.ufug.2021.127435
- 47. Lira MM, De Aquino RR, Ferreira AA, Carvalho MA, Neto ON, Santos GS (2007) Combining multiple artificial neural networks using random committee to decide upon electrical disturbance classification. In: 2007 international joint conference on neural networks. IEEE, pp 2863–2868. https://doi.org/10.1109/IJCNN.2007.4371414
- 48. Liu H, Chen SM (2020) Heuristic creation of deep rule ensemble through iterative expansion of feature space. Inf Sci 520:195–208. https://doi.org/10.1016/j.ins.2020.02.001
- 49. Liu F, Zhang G, Lu J (2020) Heterogeneous domain adaptation: an unsupervised approach. IEEE Trans Neural Netw Learn Syst 31(12):5588–5602. https://doi.org/10.1109/TNNLS.2020.2973293
- 50. Liu L, Xiang H, Li X (2021) A novel perturbation method to reduce the dynamical degradation of digital chaotic maps. Nonlinear Dyn 103(1):1099–1115. https://doi.org/10.1007/s11071-020-06113-4
- 51. Lloyd-Hughes B, Saunders MA (2002) A drought climatology for Europe. Int J Climatol 22(13):1571–1592
- 52. Mahdavi M (2010) Applied hydrology. Tehran University Publication, Tehran
- 53. McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time scales. In: proceedings of the 8th conference on applied climatology, vol 17. American Meteorological Society, Boston, pp 179–183
- 54. Melesse AM, Khosravi K, Tiefenbacher J, Heddam S, Kim S, Mosavi A, Pham B (2020) River water salinity prediction using hybrid machine learning models. Water 12(10):2951
- 55. Meshram SG, Safari MJS, Khosravi K, Meshram C (2021) Iterative classifier optimizer-based pace regression and random forest hybrid models for suspended sediment load prediction. Environ Sci Pollut Res 28(9):11637–11649
- 56. Mirabbasi R, Anagnostou EN, Fakheri-Fard A, Dinpashoh Y, Eslamian S (2013) Analysis of meteorological drought in Northwest Iran using the joint deficit index. J Hydrol 492:35–48
- 57. Mishra AK, Desai VR (2005) Drought forecasting using stochastic models. Stoch Environ Res Risk Assess 19(5):326–339
- 58. Mokhtarzad M, Eskandari F, Vanjani NJ, Arabasadi A (2017) Drought forecasting by ANN, ANFIS, and SVM and comparison of the models. Environ Earth Sci 76(21):729
- 59. Monteiro Junior JJ, Silva EA, De Amorim Reis AL, Mesquita Souza Santos JP (2019) Dynamical spatial modeling to simulate the forest scenario in Brazilian dry forest landscapes. Geol Ecol Landsc 3(1):46–52. https://doi.org/10.1080/24749508.2018.1481658
- 60. Moradi HR, Rajabi M, Faragzadeh M (2011) Investigation of meteorological drought characteristics in Fars province. Iran Catena 84(1–2):35–46
- 61. Morid S, Smakhtin V, Bagherzadeh K (2007) Drought forecasting using artificial neural networks and time series of drought indices. Int J Climatol 27(15):2103–2111
- 62. Murwendo T, Murwira A, Masocha M (2020) Modelling and predicting mammalian wildlife abundance and distribution in semi-arid Gonarezhou National Park south eastern Zimbabwe. Ecofeminism Clim Change 1(3):151–163. https://doi.org/10.1108/EFCC-05-2020-0016
- 63. Nhu VH, Khosravi K, Cooper JR, Karimi M, Pham BT, Lyu Z (2020) Monthly suspended sediment load prediction using artificial intelligence: testing of a new random subspace method. Hydrol Sci J 65(12):2116–2127
- 64. Niranjan A, Prakash A, Veena N, Geetha M, Shenoy PD, Venugopal KR (2017) EBJRV: an ensemble of Bagging, J48 and random committee by voting for efficient classification of intrusions. In: 2017 IEEE international WIE conference on electrical and computer engineering (WIECON-ECE), IEEE, pp 51–54. https://doi.org/10.1109/WIECON-ECE.2017.8468876
- 65. Palchaudhuri M, Biswas S (2013) Analysis of meteorological drought using standardized precipitation index: a case study of Puruliya District, West Bengal India. Int J Earth Sci Eng 7(3):6–13
- 66. Palmer WC (1968) Keeping track of crop moisture conditions, nationwide: the new crop moisture index. Weatherwise 21:156–161. https://doi.org/10.1080/00431672.1968.9932814
- 67. Panahi M, Khosravi K, Ahmad S, Panahi S, Heddam S, Melesse AM et al (2021) Cumulative infiltration and infiltration rate prediction using optimized deep learning algorithms: a study in Western Iran. J Hydrol Reg Stud 35:100825
- 68. Paulo AA, Rosa RD, Pereira LS (2012) Climate trends and behaviour of drought indices based on precipitation and evapotranspiration in Portugal. Nat Hazard Earth Syst Sci 12(5):1481–1491
- 69. Pham BT, Nguyen-Thoi T, Qi C, Van Phong T, Dou J, Ho LS, Le HV, Prakash I (2020) Coupling RBF neural network with ensemble learning techniques for landslide susceptibility mapping. CATENA 195:104805. https://doi.org/10.1016/j.catena.2020.104805
- 70. Portela MM, Zeleňáková M, Santos JF, Purcz P, Silva AT, Hlavatá H (2015) A comprehensive drought analysis in Slovakia using SPI. Eur Water 51:15–31
- 71. Quiring SM, Papakryiakou TN (2003) An evaluation of agricultural drought indices for the Canadian prairies. Agric Meteorol 118(1–2):49–62
- 72. Raziei T, Saghafian B, Paulo AA, Pereira LS, Bordi I (2009) Spatial patterns and temporal variability of drought in Western Iran. Water Resour Manag 23(3):439
- 73. Raziei T, Martins DS, Bordi I, Santos JF, Portela MM, Pereira LS, Sutera A (2015) SPI modes of drought spatial and temporal variability in Portugal: comparing observations, PT02 and GPCC gridded datasets. Water Resour Manag 29(2):487–504
- 74. Rezaei R, Gholifar E, Safa L (2016) Identifying and explaining the effects of drought in rural areas in Iran from viewpoints of farmers (case study: Esfejin Village, Zanjan Country). Desert 21(1):56–64
- 75. Rossi G (2000) Drought mitigation measures: a comprehensive framework. Drought and drought mitigation in Europe. Springer, Dordrecht, pp 233–246
- 76. Saghafian B, Mehdikhani H (2014) Drought characterization using a new copula-based trivariate approach. Nat Hazard 72(3):1391–1407
- 77. Saha S, Saha M, Mukherjee K, Arabameri A, Ngo PTT, Paul GC (2020) Predicting the deforestation probability using the binary logistic regression, random forest, ensemble rotational forest and REPTree: a case study at the Gumani river basin. India Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2020.139197
- 78. Salih SQ, Sharafati A, Khosravi K, Faris H, Kisi O, Tao H, Ali M (2020) River suspended sediment load prediction based on river discharge information: application of newly developed data mining models. Hydrol Sci J 65(4):624–637
- 79. Sánchez-Medina AJ, Galván-Sánchez I, Fernández-Monroy M (2020) Applying artificial intelligence to explore sexual cyberbullying behaviour. Heliyon 6(1):e03218. https://doi.org/10.1016/j.heliyon.2020.e03218
- 80. Shamshirband S, Hashemi S, Salimi H, Samadianfard S, Asadi E, Shadkani S, Kargar K, Mosavi A, Nabipour N, Chau KW (2020) Predicting standardized streamflow index for hydrological drought using machine learning models. Eng Appl Comput Fluid Mech 14:339–350. https://doi.org/10.1080/19942060.2020.171584
- 81. Shirmohammadi B, Moradi H, Moosavi V, Semiromi MT, Zeinali A (2013) Forecasting of meteorological drought using wavelet-ANFIS hybrid model for different time steps (case study: southeastern part of east Azerbaijan province, Iran). Nat Hazard 69(1):389–402
- 82. Shukla S, Wood AW (2008) Use of a standardized runoff index for characterizing hydrologic drought. Geophys Res Lett 35(2):15–25. https://doi.org/10.1029/2007GL032487
- 83. Stone CJ (1985) Additive regression and other nonparametric models. Ann Stat. https://doi.org/10.1214/aos/1176349548
- 84. Szalai S, Szinell CS (2000) Comparison of two drought indices for drought monitoring in Hungary—a case study. Drought and drought mitigation in Europe. Springer, Dordrecht, pp 161–166
- 85. Ting KM, Witten IH (1997) Stacking bagged and dagged models (Working paper 97/09). University of Waikato, Department of Computer Science, Hamilton, New Zealand
- 86. Tsakiris G, Pangalou D, Vangelis H (2007) Regional drought assessment based on the reconnaissance drought index (RDI). Water Resour Manag 21(5):821–833
- 87. van Rooy MP (1965) A rainfall anomaly index independent of time and space. Notos 14(43):6
- 88. Venegas-Quiñones HL, Thomasson M, Garcia-Chevesich PA (2020) Water scarcity or drought? the cause and solution for the lack of water in Laguna de Aculeo. Water Conserv Manage 4(1):42–50. https://doi.org/10.26480/wcm.01.2020.42.50
- 89. Vicente-Serrano SM, González-Hidalgo JC, de Luis M, Raventós J (2004) Drought patterns in the Mediterranean area: the Valencia region (eastern Spain). Clim Res 26(1):5–15
- 90. Vicente-Serrano SM, Beguería S, López-Moreno JI, Angulo M, El Kenawy A (2010) A new global 0.5 gridded dataset (1901–2006) of a multiscalar drought index: comparison with current drought index datasets based on the palmer drought severity index. J Hydrometeorol 11(4):1033–1043
- 91. Wang F, Shi Z, Biswas A, Yang S, Ding J (2020) Multi-algorithm comparison for predicting soil salinity. Geoderma 365:114211. https://doi.org/10.1016/j.geoderma.2020.114211
- 92. Wardlow BD, Anderson MC, Verdin JP (2012) Remote sensing of drought: innovative monitoring approaches, (CRC Press)
- 93. Wilhite DA, Buchanan-Smith M (2005) Drought as hazard: understanding the natural and social context. Drought Water Cris Sci Technol Manag Issue 3:29
- 94. Wilhite DA, Svoboda MD, Hayes MJ (2007) Understanding the complex impacts of drought: a key to enhancing drought mitigation and preparedness. Water Resour Manag 21(5):763–774
- 95. Witten IH, Frank E (2005) Data mining: practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann, San Francisco
- 96. Wu H, Hayes MJ, Weiss A, Hu Q (2001) An evaluation of the standardized precipitation index, the China-Z index and the statistical Z-score. Int J Climatol 21(6):745–758
- 97. Xu B, Lin B (2017) Assessing CO2 emissions in China's iron and steel industry: a nonparametric additive regression approach. Renew Sustain Energy Rev 72:325–337
- 98. Xu B, Luo L, Lin B (2016) A dynamic analysis of air pollution emissions in China: evidence from nonparametric additive regression models. Ecol Indic 63:346–358. https://doi.org/10.1016/j.ecolind.2015.11.012
- 99. Zamani R, Tabari H, Willems P (2015) Extreme streamflow drought in the Karkheh river basin (Iran): probabilistic and regional analyses. Nat Hazard 76(1):327–346
- 100. Zarch MAA, Malekinezhad H, Mobin MH, Dastorani MT, Kousari MR (2011) Drought monitoring by reconnaissance drought index (RDI) in Iran. Water Resour Manag 25(13):3485
- 101. Zargar A, Sadiq R, Naser B, Khan FI (2011) A review of drought indices. Environ Rev 19(NA):333–349
- 102. Zhao T, Shi J, Lv L, Xu H, Chen D, Cui Q, Jackson TJ, Yan G, Jia L, Chen L, Zhao K, Zheng X, Zhao L, Zheng C, Ji D, Xiong C, Wang T, Li R, Pan J, Wen J, Yu C, Zheng Y, Jiang L, Chai L, Lu H, Yao P, Ma J, Lv H, Wu J, Zhao W, Yang N, Guo P, Li Y, Hu L, Geng D, Zhang Z (2020) Soil moisture experiment in the Luan River supporting new satellite mission opportunities. Remote Sens Environ 240:111680. https://doi.org/10.1016/j.rse.2020.111680
- 103. Zhao T, Shi J, Entekhabi D, Jackson TJ, Hu L, Peng Z, Yao P, Li S, Kang CS (2021) Retrievals of soil moisture and vegetation optical depth using a multi-channel collaborative algorithm. Remote Sens Environ 257:112321. https://doi.org/10.1016/j.rse.2021.112321
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0659885f-b632-436d-9a83-f54087049c25