PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Surface properties and antimicrobial activity of composite nanofibers of polycaprolactone with silver precipitations

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The purpose of the article is to investigate the structure and antimicrobial properties of composite nanofibers with silver particles precipitated onto the nanofibers surface. Design/methodology/approach: A solution was prepared in the first place made of the following solvents to fabricate antimicrobial composite nanofibers of polycaprolactone with silver precipitations: formic acid and acetic acid at a rate of 70:30. Then, silver nitrate was introduced into the fabricated solution of the solvents and it was subjected to the interaction of ultrasounds, and after 10 minutes polycaprolactone was added to the solution, and then the solution was mixed for 12 hours and a solution was obtained with a 10% concentration and the mass fraction of 0, 1, 3 and 5% of silver nitrate additives. The solution was forced into a positive voltage electrode placed above a negative voltage electrode; the solution was then subjected to the activity of a strong electrostatic field transforming the solution into micro- and nanofibers. After electrospinning, the fibers obtained underwent the activity of a 2% ascorbic acid solution, by means of which silver was precipitated on the nanofibers surface. Viscosity and electrical conductivity tests were performed of single-component and double-component solutions, of the fibers’ structure in a transmission electron microscope, of the BET, Langmuir specific surface area and DTF porosity with the method of gas adsorption and antimicrobial activity of the nanocomposites produced on the nanocomposites on following bacteria: Staphylococcus aureus, Escherichia coli, Candida albicans. Findings: The use of a formic acid and acetic acid solution at a rate of 70:30 for preparation of a polycaprolactone solution for its electrospinning enables to obtain a non-toxic and fully biodegradable polymer nanofibers of polycaprolactone with PCL/Ag silver precipitations possessing high antimicrobial performance against Gram+, Gram- bacteria and fungi. Practical implications: Antimicrobial composite nanofibers with silver nanoparticles precipitated onto the nanofibers surface can be applied in biodegradable antiseptic dressings in the form of mats or other textiles containing polymer nanofibers of polycaprolactone with PCL/Ag silver precipitations obtained as a result of electrospinning. Originality/value: The research outcomes confirm that it is feasible to manufacture polycaprolactone nanofibers with PCL/Ag silver precipitations possessing high antimicrobial performance against Gram+, Gram- bacteria and fungi.
Rocznik
Strony
53--60
Opis fizyczny
Bibliogr. 42 poz.
Twórcy
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Department of Microbiology and Immunology, Medical University of Silesia in Katowice, ul. Jordana 19, 41-808 Zabrze, Poland
autor
  • Department of Microbiology and Immunology, Medical University of Silesia in Katowice, ul. Jordana 19, 41-808 Zabrze, Poland
Bibliografia
  • [1] J. Chapman, T. Sullivan, F. Regan, Nanoparticles in anti-microbial materials: Use and characterisation, RSC Nanoscience and Nanotechnology (2012) 1-225.
  • [2] P. Dallas, V.K. Sharma, R. Zboril, Silver polymeric nanocomposites as advanced antimicrobial agents: Classification, synthetic paths, applications, and perspectives, Advances in Colloid and Interface Science 166/1-2 (2011) 119-135.
  • [3] NIAID's Antibacterial Resistance Program: Current Status and Future Directions, National Institute of Allergy and Infectious Diseases, USA, 2014.
  • [4] M.D. Fogerty, N.N. Abumrad, L. Nanney, P.G. Arbo-gast, B. Poulose, A. Barbul, Risk factors for pressure ulcers in acute care hospitals, Wound Repair and Regeneration 16 (2008) 11-8.
  • [5] R. Chou, T. Dana, C. Bougatsos, I. Blazina, A.J. Starmer, K. Reitel, D.I. Buckley, Pressure Ulcer Risk Assessment and Prevention: A Systematic Comparative Effectiveness Review, Annals of Internal Medicine 159 (2013) 28-38.
  • [6] S. Enoch, A. Roshan, M. Shah, Emergency and early management of burns and scalds, British Medical Journal 338 (2009) b1037.
  • [7] T. Avni, A. Levcovich, D.D. Ad-El, L. Leibovici, M. Paul, Prophylactic antibiotics for burns patients: systematic review and meta-analysis, British Medical Journal 340 (2010) c241.
  • [8] Antimicrobial resistance: global report on surveil-lance, WHO Press, World Health Organization, Geneva, Switzerland, 2014.
  • [9] L.A. Barajas-Nava, J. López-Alcalde, M. Roqué i Figuls, I. Solà, X. Bonfill Cosp, Antibiotic prophylaxis for preventing burn wound infection (Review), The Cochrane Collaboration, Publ. John Wiley & Sons, Ltd., 2013.
  • [10] A.E. van den Bogaard, E.E. Stobberingh, Antibiotic usage in animals: impact on bacterial resistance and public health, Drugs 58/4 (1999) 589-607.
  • [11] C.S. Yang, D. Kroshinksy, B.M. Cummings, Neonatal Junctional Epidermolysis Bullosa: Treatment Conun-drums and Ethical Decision Making, American Journal of Clinical Dermatology 15/5 (2014) 445-450.
  • [12] M. Otto, Staphylococcus aureus toxins, Current Opinion in Microbiology 17/1 (2014) 32-37.
  • [13] K. Hiramatsu, L. Cui, M. Kuroda, T. Ito, The emergence and evolution of methicillin-resistant Staphy-lococcus aureus, Trends in Microbiology 9/10 (2001) 486-493.
  • [14] S. Joana, P. Pedro, G. Elsa, M. Filomena, Is vancomycin MIC creep a worldwide phenomenon? Assessment of S. aureus vancomycin MIC in a tertiary university hospital, BMC Research Notes 6/1 (2013) art. no. 65.
  • [15] M.R. Sharif, J. Alizargar, A. Sharif, Prevalence of methicillin-resistant Staphylococcus aureus nasal carriage in children admitted to Shahidbeheshti hospital, World Journal of Medical Sciences 9/2 (2013) 109-112.
  • [16] X. Ye, Y. Lu, H. Ma, W. Yuan, X. Zhang, L. Zhang, Y. Huang, X. Liu, D. Luo, Detection of panton-valentine leukocidin gene and analysis of antibiotic resi-stance in methicilin-resistant Staphylococcus aureus, Chinese Journal of Infection and Chemotherapy 13/4 (2013) 289-292.
  • [17] A. Bhushan (ed.), Springer Handbook of Nanotechnology, Second Edition, Springer, 2007.
  • [18] Y. Champion, H.-J. Fecht, Nano-Architectured and Nanostructured Materials Fabrication, Control and Properties, Wiley-VCH, Weinheim, 2004.
  • [19] M. Köhler, W. Fritzsche, Nanotechnology: An Introduction to Nanostructuring Techniques, Wiley-VCH, Weinheim, 2004.
  • [20]L.A. Dobrzański, Overview and general ideas of the development of constructions, materials, technologies and clinical applications of scaffolds engineering for regenerative medicine, Archives of Materials Science and Engineering 69/2 (2014) 53-80.
  • [21] L.A. Dobrzański, M. Pawlyta, A. Hudecki, Conceptual study on a new generation of the high-innovative advanced porous and composite nanostructural functional materials with nanofibers, Journal of Achievements in Materials and Manufacturing Engineering 49/2 (2011) 550-565.
  • [22] G. Cao, Nanostructures and Nanomaterials: Synthesis, Properties and Applications, Imperial College Press, London, 2004.
  • [23] A.L. Andrady, Science and technology of polymer nanofibers, John Wiley & Sons, Hoboken, New Jersey and Canada, 2008
  • [24] P.J. Brown, K. Stevens (eds.), Nanofibers and nanotechnology in textiles, CRC Press, Boca Raton, Boston, New York, Washington, Cambridge, 2007.
  • [25] J.-H. He, Y. Liu, L.-F. Mo, Y.-Q. Wan, L. Xu, Electrospun Nanofibres and Their Applications, iSmithers, Shawbury, Shrewsbury, Shropshire, 2008.
  • [26] L.A. Dobrzański, A. Hudecki, Structure, geometrical characteristics and properties of biodegradable micro- and polycaprolactone nanofibers, Archives of Materials Science and Engineering 70/1 (2014) 5-13.
  • [27] L.A. Dobrzański, B. Nieradka, M. Macek, W. Matysiak, Influence of the electrospinning parameters on the morphology of composite nanofibers, Archives of Materials Science and Engineering 69/1 (2014) 32-37.
  • [28] C. Hellmann, J. Belardi, R. Dersch, A. Greiner, J.H. Wendorff, S. Bahnmueller, High Precision Deposition Electrospinning of nanofibers and nanofiber nonwovens, Polymer 50 (2009) 1197-1205.
  • [29] A. Espíndola-González, A.L. Martínez-Hernández, F. Fernández-Escobar, V.M. Castaño, W. Brostow, T. Datashvili, C. Velasco-Santos, Natural-Synthetic Hybrid Polymers Developed via Electrospinning: The Effect of PET in Chitosan/Starch System, International Journal of Molecular Sciences 12 (2011) 1908-1920.
  • [30] J.M. Deitzel, J.D. Klein Meyer, J.K. Hirvonen, N.C. Beck Tan, The effect of processing variables on the morphology of electrospun nano fibers and textiles, Journal of Polymer Science 42/1 (2001) 261-272.
  • [31] Z.-M. Hung, Y.-Z. Zhang, M. Kotacki, S. Ramakrishna, A review on polymer nanofibers by electrospinning and their application in nano composites, Composite Science and Technology 63 (2003) 2223-2253.
  • [32] X.-F. Wang, Z.-M. Huang, Melt-electrospinning of PMMA, Chinese Journal of Polymer Science 28/1 (2010) 45-53. [33] J. Lin, B. Ding, J. Yu, Y. Hsieh, Direct Fabrication of Highly Nanoporous Polystyrene Fibers via Electrospinning, ACS Applied Materials & Interfaces 2 (2010) 521-528.
  • [34] Y. Srivastava, I. Loscertales, M. Marquez, T. Thorsen, Electrospinning of hollow and core/sheath nanofibers using a microfluidic manifold, Microfluid and Nano-fluid 4/3 (2007) 245-250.
  • [35] Z. Sun, E. Zussman, A.L. Yarin, J.H. Wendorff, A. Greiner, Compound Core-shell Polymer Nanofibers by Co-Electrospinning, Advanced Materials 15/22 (2003) 1929-1932.
  • [36] A. Sionkowska, Current research on the blends of natural and synthetic polymer as new biomaterials: Review, Progress in Polymers Science 36 (2011) 1254-1276.
  • [37] M. Gagliardi, Nanofibers: Technologies and Developing Markets, BCC Research Report NAN043A, June 2007.
  • [38] E. Formo, E. Lee, D. Campbell, Y. Xia, Functionalization of electrospun TiO2nanofibers with Pt nanoparticles and nanowires for catalytic applications, Nano Letters 8/2 (2008) 668-672.
  • [39] D. Li, Y. Xia, Direct fabrication of composite and ceramic hollow nanofibers by electrospinning, Nano Letters 4/5 (2004) 933-938.
  • [40] Z. Liu, D.D. Sun, P. Guo, J.O. Leckie, An efficient bicomponent TiO2/SnO2nanofiber photocatalyst fabricated by electrospinning with a side-by-side dual spinneret method, Nano Letters 7/4 (2007) 1081-1085.
  • [41] X. Lu, C. Wang, Y. Wei, One-Dimensional Composite Nanomaterials: Synthesis by Electrospinning and Their Applications, Small 5/21 (2009) 2349-2370.
  • [42] S. Agarwal, A. Greiner, J.H. Wendorff, Functional materials by electrospinning of polymers Progress in Polymer Science 38/6 (2013) 963-991.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-06568222-1b99-47fc-8ac1-d4c6a95febca
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.