PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Structure of aluminosilicate-supported nickel and iron oxides nanocomposites in gaseous and aqueous media

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Physicochemistry of interfaces - instrumental methods (22-26.08.2021 ; Lublin, Poland)
Języki publikacji
EN
Abstrakty
EN
A series of mixed oxides was synthesized by deposition of a guest phase on a highly dispersed oxide matrix. Fumed nanooxides SiO2, Al2O3, SiO2/Al2O3, and SiO2/Al2O3/TiO2 with the specific surface area of 65-91 m2/g were selected as highly dispersed matrices. NiO/FexOy was deposited as a guest oxide using solvate-stimulated modification of a surface of fumed nanocarriers with nickel nitrate and iron(III) formate and subsequent heat treatment up to 600 °C to form NiO/FexOy. The aim of this work was to study the influence of the composition and structure of fumed oxide matrices and deposited guest phase on the behavior of the composites in gaseous and aqueous media using XRD, nitrogen adsorption and SEM/EDX, and quasi-elastic light scattering (QELS) methods. The lowtemperature nitrogen adsorption isotherms have a sigmoid shape with a narrow hysteresis loop characteristic of mesoporous materials. The specific surface area of composites varies from 65 to 120 m2/g. SEM data show denser aggregate structure of nanocomposites compared to the initial carriers. The primary particle size was in the 30-60 nm range. According to QELS data, there is a tendency to form aggregates of 100 nm - 10 µm in size in the aqueous media. The XRD method shows that the deposited metal oxides are in the form of crystalline phases of NiO with crystallites of 7-23 nm in size, but the iron oxide reflexes were not identified for NiO-containing composites.
Rocznik
Strony
art. no. 144375
Opis fizyczny
Bibliogr. 61 poz., rys., tab., wykr.
Twórcy
  • Chuiko Institute of Surface Chemistry, NASU, 17 General Naumov str., 03164 Kyiv, Ukraine
  • Ovcharenko Institute of Biocolloidal Chemistry, NASU, 42 Vernadskii av., 03142 Kyiv, Ukraine
  • National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», 37 Peremohy av., 03056 Kyiv, Ukraine
  • Taras Shevchenko National University of Kyiv, 64/13 Volodymyrs’ka str., 01033 Kyiv, Ukraine
autor
  • Chemistry Department, Maria Curie-Sklodowska University, M. Curie-Sklodowska sq. 3, 20031 Lublin, Poland
  • Taras Shevchenko National University of Kyiv, 64/13 Volodymyrs’ka str., 01033 Kyiv, Ukraine
  • Chuiko Institute of Surface Chemistry, NASU, 17 General Naumov str., 03164 Kyiv, Ukraine
  • National University of Food Technology, 68 Volodymyrs’ka str., 01033 Kyiv, Ukraine
  • Chuiko Institute of Surface Chemistry, NASU, 17 General Naumov str., 03164 Kyiv, Ukraine
autor
  • Chuiko Institute of Surface Chemistry, NASU, 17 General Naumov str., 03164 Kyiv, Ukraine
  • Chemistry Department, Maria Curie-Sklodowska University, M. Curie-Sklodowska sq. 3, 20031 Lublin, Poland
  • Chemistry Department, Maria Curie-Sklodowska University, M. Curie-Sklodowska sq. 3, 20031 Lublin, Poland
  • National University of Food Technology, 68 Volodymyrs’ka str., 01033 Kyiv, Ukraine
Bibliografia
  • ARANDIYAN, H.R., PARVARI, M, 2009. Studies on mixed metal oxides solid solutions as heterogeneous catalysts. Braz. J. Chem. Eng., 26, 63-74.
  • ANDERSSON, M.P., BLIGAARD, T., KUSTOV, A., LARSEN, K.E., GREELEY, J., JOHANNESSEN, T., CHRISTENSEN, C.H., NØRSKOV, J.K., 2006. Toward computational screening in heterogeneous catalysis: Paretooptimal methanation catalysts. J. Catal., 239, 2, 501-506.
  • BEACH, E., BROWN, S., SHQAU, K., MOTTERN, M., WARCHOL, Z., MORRIS, P., 2008. Solvothermal synthesis of nanostructured NiO, ZnO and Co3O4 microspheres. Mater. Lett. 62, p. 1957–1960.
  • BEACH, E.R., SHQAU, K., BROWN, S.E., ROZEVELD, S.J., MORRIS, P.A., 2009. Solvothermal synthesis of crystalline nickel oxide nanoparticles. Mater. Chem. Phys., V.115(1), 371-377.
  • BOGATYREV, V.M., GUN’KO, V.M., GALABURDA, M.V., BORYSENKO, M.V., POKROVSKIY, V.A., ORANSKA, O.I., POLSHIN, E.V., LEBODA, R., SKUBISZEWSKA-ZIĘBA, J. 2009. Synthesis and characterization of Fe2O3/SiO2nanocomposites. J. Colloid and Interface Science, 338, 376-388.
  • CHOWDHURY, A.N., RAHIM, A., FERDOSI, Y. J., AZAM, MD. SH., HOSSAIN, M. M. 2010, Cobalt–nickel mixed oxide surface: A promising adsorbent for the removal of PR dye from water. Applied Surface Science, 256, 3718–3724.
  • DENG, X.Y., CHEN, Z., 2004. Preparation of nano-NiO by ammonia precipitation and reaction in solution and competitive balance, Mater. Lett. 58, 276, 276–280.
  • DIAS, Y.R., PEREZ-LOPEZ, O.W. 2021. CO2 conversion to methane using Ni/SiO2 catalysts promoted by Fe, Co and Zn. Journal of Environmental Chemical Engineering, 9, 1, 104629
  • EBERT, D.Y., DOROFEEVA, N.V., SAVEL’EVA, A.S., KHARLAMOVA, T.S., SALAEV, M.A., SVETLICHNYI, V.A., MAGAEV, O.V., VODYANKINA, O.V. 2018. Silica-supported Fe-Mo-O catalysts for selective oxidation of propylene glycol. Catalysis Today.
  • GALABURDA, M.V., KLONOS, P., GUN’KO, V.M., BOGATYROV, V.M., BORYSENKO, M.V., PISSIS, P., 2014. Dielectric properties and thermal destruction of poly(dimethylsiloxane)/Fe2O3/SiO2 nanocomposites. Applied Surface Science, 305, 67-76.
  • GAOA, Y., DOUA, L., ZHANGA, SH., JIEPANC, L.Z., HAO, X.H., OSTRIKOVD, S.K., SHAOABE, T., 2021. Coupling bimetallic Ni-Fe catalysts and nanosecond pulsed plasma for synergistic low-temperature CO2 methanation. Chemical Engineering Journal, V. 420, Part 2, 127693.
  • GREGG, S.J, SING, K.S.W. 1982 Adsorption, Surface Area and Porosity (Academic Press, London).
  • GONCHARUK, O., SHIPUL, O., DYACHENKO, A., ISCHENKO, O., ANDRIYKO, L., MARYNIN, A., PAKHLOV, E. ORANSKA, O., BORYSENKO M. 2019. Silica-supported Ni and Co nanooxides: Colloidal properties and interactions with polar and nonpolar liquids. Journal of molecular liquids. V. 285, P. 397-402.
  • GUN’KO, V.M., BLITZ, J.P., BANDARANAYAKE, B., PAKHLOV, E.M., ZARKO, V.I., SULYM, I.YA., KULYK, K.S., GALABURDA, M.V., BOGATYREV, V.M., ORANSKA, O.I., BORYSENKO, M.V., LEBODA, R., SKUBISZEWSKA-ZIĘBA, J., JANUSZ, W., 2012. Structural characteristics of mixed oxides MOx/SiO2 affecting photocatalytic decomposition of methylene blue. Applied Surface Science, 258, 6288-6296.
  • GUN’KO, V.M. 2014. Composite materials: textural characteristics. Appl Surf Sci. 307 444
  • GUN’KO, V.M., TUROV, V.V., ZARKO, V.I., GONCHARUK, O.V., PAKHLOV, E.M., SKUBISZEWSKA-ZIĘBA, J., BLITZ, J.P. Interfacial phenomena at a surface of individual and complex fumed nanooxides, Adv. Colloid Interface Sci.235 (2016) 108–189.
  • HAN, D.Y., YANG, H.Y., SHEN, C.B., ZHOU, X., WANG, F.H. 2004. Synthesis and size control of NiO nanoparticles by water-in-oil microemulsion, Powder Technology, 147(1–3), 113-11.
  • IRFAN, M., DOGAN, N., BINGOLBALI, A., ALIEW, F. 2021. Synthesis and characterization of NiFe2O4 magnetic nanoparticles with different coating materials for magnetic particle imaging (MPI) Journal of Magnetism and Magnetic Materials, 537, 168150.
  • The Chemistry of Silica. Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry. ILER, VON R. K. John Wiley and Sons, Chichester 1979. XXIV, 886 p
  • JIANFEN, L.I., RONG, YAN, B.O., XIAO, DAVID, T.E.E, LIANG, LIJUAN, D.U., 2008. Development of NanoNiO/Al2O3 Catalyst to be Used for Tar Removal in Biomass Gasification. Environ. Sci. Technol., 42, 16, 6224–6229.
  • JENKINS R., SNYDER R.L. 1996. Introduction to X-ray Powder Diffractometry (New York: Wiley).
  • JCPDS Database, International Center for Diffraction Data, PA 2001 Available at: http://www.icdd.com
  • KLONOS, P., PISSIS, P., GUN’KO, V.M., KYRITSIS, A., GUZENKO, N.V., PAKHLOV, E.M., ZARKO, V.I., JANUSZ,
  • W., SKUBISZEWSKA-ZIĘBA, J., LEBODA, R., 2010. Interaction of poly(ethylene glycol) with fumed silica and alumina/silica/titania. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 360, 220-231.
  • KLONOS, P., KULYK, K., BORYSENKO, M.V., GUN’KO, V.M., KYRITSIS, A., PISSIS, P., 2016. Effects of Molecular Weight below the Entanglement Threshold on Interfacial Nanoparticles/Polymer Dynamics, Macromolecules, 49, 9457–9473.
  • LAI, T.L., SHUB, Y.Y., HUANG, G.L., LEE, C.C., WANG, C.B., 2008. Microwave-assisted and liquid oxidation combination techniques for the preparation of nickel oxide nanoparticles. J. Alloys Compd. 450, 318.
  • LEINEWEBER, A., JACOBS, H., HULL, S., 2001. Ordering of Nitrogen in Nickel Nitride Ni3N Determined by Neutron Diffraction. Inorganic Chemistry 40, 5818-5822.
  • LENGGOROA, I.W., ITOH, Y., IID, N. , OKUYAMA K., 2003. Control of size and morphology in NiO particles preparedby a low-pressure spray pyrolysis. Mater. Res. Bull. 38, 1819.
  • LYSOV, D.V., KUZNETSOV, D.V., YUDIN, A.G., MURATOV, D.S., LEVINA, V.V., RYZHONKOV, D.I., 2010,Preparation of nickel oxide nanostructured powders under the action of ultrasound. Nanotechnologies in Russia 5, 493.
  • Malvern Instruments [homepage on the Internet] 2017. Available at: https://www.malvern.com
  • MASHKURI, A., SALJOOQI, A., TOHIDIYAN, Z. 2017. Nano clay Ni/NiO nanocomposite new sorbent for separation and preconcentration dibenzothiophene from crude prior to UVevis spectrophotometery determination, Analytical Chemistry Research, 12, 47-51.
  • MAHMOUD, A.M., IBRAHIM, F.A., SEHAM A., YOUSSEF, S.N.A. 2015. Adsorption of heavy metal ion from aqueous solution by nickel oxide nanocatalyst prepared by different methods, Egyptian Journal of Petroleum, 24, 1, 27-35.
  • MESHKINI FAR R., ISHCHENKO O.V., DYACHENKO A.G., BIEDA O., GAIDAI S., LISNYAK V. 2018 CO2hydrogenation into CH4 over Ni–Fe catalysts. Functional Materials Letters. V.11, N.3, 1850057.
  • MIAO, G., ZAN, Y., SUN, Y., WANG, H., LI, SH., LIU, CH., LI, SH., KONG, L., SUN, Y., 2018. Mn-promoted hydrogenation of microalgae (Chlorococcum sp.) to 1,2-propanediol and ethylene glycol over Ni-ZnO catalysts. Applied Catalysis A: General, 565, 34-45.
  • PALANISAMY, P., RAICHUR, A.M. 2009. Synthesis of spherical NiO nanoparticles through a novel biosurfactant mediated emulsion technique, Mater. Sci. Eng. C, 29(1), 199-204.
  • RADWAN, N.R.E., SAMY EL-SHALL, M., SAMY, EL-SHALL, M., HASSAN, M., HASSAN, A., HASSAN, M., HASSAN., A., 2007. Synthesis and characterization of nanoparticle Co3O4, CuO and NiO catalysts prepared by physical and chemical methods to minimize air pollution, Applied Catalysis A General, 331(1), 8-18.
  • RAVINDHRANATH, K., RAMAMOORTY, M. 2017. Nickel Based Nano Particles as Adsorbents in Water Purification Methods. A Review, Oriental Journal of Chemistry, 33, 4, 1603-1613.
  • PINES, H., HAAG W.O. Alumina: Catalyst and Support. I. Alumina, its Intrinsic Acidity and Catalytic Activity, J. Am. Chem. Soc. 1960, 82, 10, 2471–2483.
  • PULIMI, V.R.R., JEEVANANDAM, P., 2009. The effect of anion on the magnetic properties of nanocrystalline NiO synthesized by homogeneous precipitation J. Magn. Magn. Mater., 321, 17, 2556-2562.
  • SATO, A.G., VOLANTI, D.P., MEIRA, D.M., DAMYANOVA S., LONGO, E. J.M.C. 2013. Bueno Effect of the ZrO2phase on the structure and behavior of supported Cu catalysts for ethanol conversion. Journal of Catalysis 307, 1–17.
  • SAFDARI, T., 2020. Iron-nickel oxide: A promising strategy for water oxidation. New J. Chem., 44, 1517-1523.
  • SCHMIDT, G. Nanoparticles: From Theory to Application, VCH, Weinheim, 2004.
  • Synthesis of Inorganic Nanomaterials. Advances and Key Technologies / ed. S.M. Bhagyaraj et al. India: Elsevier, 2018. P. 19–57.
  • SING, K.S.W, EVERETT, D.H, HAUL RAW, MOSCOU L, PIEROTI R.A., ROUQUEROL J., SIEMIENIEWSKA T., 1985. Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity. Pure Appl Chem, 57, 603.
  • SULYM, I., GONCHARUK, O., STERNIK, D., SKWAREK, E., DERYLO-MARCZEWSKA, A., JANUSZ, W., GUN'KO, V.M. 2016. Silica-Supported Titania-Zirconia Nanocomposites: Structural and Morphological Characteristics in Different Media. Nanoscale Res Lett. Dec, 11(1), 111.
  • SULYM, I., GONCHARUK, O., SKWAREK, E., STERNIK, D., BORYSENKO, M.V., DERYLO-MARCZEWSKA, A., JANUSZ, W., GUN’KO, V.M. 2015. Silica-supported ceria-zirconia and titania-zirconia nanocomposites: Structural characteristics and electrosurface properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 482, 631-638
  • SULYM, I., STERNIK, D., OLEKSENKO, L., LUTSENKO, L., BORYSENKO, M., DERYLO-MARCZEWSKA, A. 2016. Highly dispersed silica-supported ceria–zirconia nanocomposites: Preparation and characterization. Surfaces and Interfaces, 5, 8-14.
  • SURCA, A., OREL, B., PIHLAR, B., BUKOVEC, P., 1996. Optical, spectroelectrochemical and structural properties of solgel derived Ni-oxide electrochromic film. J. Electroanal. Chem. 408, 83.
  • TANAKA, H., BOULINGUIEZ, M., VRINAT, M., 1996. Hydrodesulfurization of thiophene, dibenzothiophene and gas oil on various Co-Mo/TiO2-Al2O3 catalysts. Catal Today, 29, 209–213.
  • TEOH, L.G., LI K.-D. 2012. Synthesis and Characterization of NiO Nanoparticles by Sol-Gel Method. Materials Transactions, V. 53 (12), pp. 2135-2140.
  • THOMMES M, KANEKO K, NEIMARK AV, OLIVIER JP, RODRIGUEZ-REINOSO F, ROUQUEROL J, SING KSW, 2015 Pure Appl. Chem.; IUPAC Technical Report; Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report).
  • TAKEI, T., IGUCHI, N., HARUTA M. 2011. Support effect in the gas phase oxidation of ethanol over nanoparticulate gold catalysts. New J. Chem., 35, 2227-2233.
  • TRUEBA, M., TRASATTI, S. 2005. γ-Alumina as a Support for Catalysts: A Review of Fundamental Aspects. Eur. J. Inorg. Chem., 3393–3403.
  • TEERAPAT RUTIRAWUT, WANWISA LIMPHIRAT, ASAWIN SINSARP, KRITSANU TIVAKORNSASITHORN, TOEMSAK SRIKHIRIN, TANAKORN OSOTCHAN, 2015. Composition and Oxidation State of Cobalt- and NickelIron Oxide Colloidal Nanoparticles in Liquid Phase, Advanced Materials Research 1103, 21-27.
  • THOTA, S., KUMAR, J., 2007, Sol–gel synthesis and anomalous magnetic behaviour of NiO nanoparticles. J. Phys. Chem. Solids 68, 1951.
  • WANG, Y.A., ZHU, J., YANG, X., LU, L., WANG, X., 2005. Preparation of NiO nanoparticles and their catalytic activity in the thermal decomposition of ammonium perchlorate, Thermochimica Acta, 437, 1, 106-109.
  • WANG, W.N., ITOH, Y., LENGGORO, I.W., OKUYAMA, K., 2004. Nickel and Nickel Oxide Nanoparticles Prepared from Nickel Nitrate Hexahydrate by a Low Pressure Spray Pyrolysis. Mater. Sci. Eng. B 111, 69.
  • WEI, W., JIANG, X., LU, L., YANG, X., WANG, X, 2009. Study on the catalytic effect of NiO nanoparticles on the thermal decomposition of TEGDN/NC propellant, J. Hazard Mater. 168, 2-3, 838-42.
  • WISNIEWSKA, M., NOWICKI, P., BOGATYROV, V.M., NOSAL-WIERCINSKA, A., PIETRZAK, R., 2016. Comparison of adsorption properties of MgxOy-SiO2 and ZnxOy-SiO2 in the mixed oxide-poly (vinyl alcohol) system. Colloids and Surfaces A: Physicochem. Eng. Aspects, 492, 12–18.
  • WU, Y., HE, Y., WU, T., CHEN, T., WENG, W., WAN, H. 2007. Influence of some parameters on the synthesis of nanosized NiO material by modified sol–gel method. Mater. Lett. 61, 3174.
  • ZHANG, Y., RIMAL, G., TANG, J., DAI Q. 2018. Synthesis of NiFe2O4 Nanoparticles for Energy and Environment Applications, Mater. Res. Express, 5, 025023
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0651e152-95d8-4fa9-903d-2870debbdab8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.