PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Badania wytrzymałości oraz zależności naprężenie-odkształcenie betonu o dużej wytrzymałości zbrojonego mieszaniną włókien polipropylenowych i poliestrowych

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
A study on mechanical properties and stress – strain response of high strength concrete reinforced with polypropylene–polyester hybrid fibres
Języki publikacji
PL EN
Abstrakty
PL
Zbadano właściwości betonu zbrojonego dodatkiem włókien poliestrowych o długości 12 mm oraz polipropylenowych o długości 6 mm oraz ich mieszaniną. W przypadku betonów zbrojonych jednym rodzajem włókien ich korzystny dodatek wynosił 0,3 % włókien poliestrowych oraz 0,2 % polipropylenowych. Ten dodatek zwiększał energię pękania oraz wytrzymałość betonu odpowiednio o 10,6 % oraz 16,3 %. Lepsze wyniki uzyskano dla betonu zbrojonego włóknami poliestrowymi. Beton ze zbrojeniem mieszanym złożonym z 0,2% włókien poliestrowych oraz 0,1 % polipropylenowych miał większą wytrzymałość oraz energię pękania od zbrojonych jednym rodzajem włókien. Zastosowanie mieszanego zbrojenia pozwoliło również zwiększyć odkształcenia przy zniszczeniu. Związane jest to z synergią działania obu rodzajów włókien; polipropylenowe mostkują mikrospękania skurczowe a poliestrowe ograniczają propagację makrospękań.
EN
The hybrid fiber reinforced concrete composed of 12 mm polyester and 6 mm polypropylene fibres of triangular shape was examined. The optimum addition of polypropylene and polyester fibres separately to concrete was 0.2% of PP and 0.3% of PO. Strength improvement was 10.6% for PP and 16.3% for PO. Hybrid fiber reinforced concrete shows further better performance with the same volume fraction of 0.3%. Superior strength improvement is achieved at 0.1 % of polypropylene and 0.2 % of polyester hybrid combination. This may be due to the synergic action of fibres: polypropylene prevent formation of shrinkage microcracks, while polyester fibres are more efficient in mitigating propagation of macrocracks.
Czasopismo
Rocznik
Strony
67--77
Opis fizyczny
Bibliogr. 30 poz., il., tab.
Twórcy
autor
  • Department of Civil Engineering, National Institute of Technology, Warangal, India
autor
  • Department of Civil Engineering, National Institute of Technology, Warangal, India
Bibliografia
  • 1. M. Grzybowski, S.P. Shah, Shrinkage cracking of fiber reinforced concrete, ACI Mater. J. 87, 138-148 (1990).
  • 2. A. Bentur, S. Mindess. Fibre reinforced cementitious composites. CRC Press, 2006.
  • 3. P. N. Balaguru, S. P. Shah. Fiber-reinforced cement composites 1992.
  • 4. J.G.M. Van Mier, Fracture processes of concrete assessment of material parameters for fracture models, CRC Press 1997.
  • 5. S. F. Uddin Ahmed, H. Mihashi, Strain hardening behaviour of lightweight hybrid polyvinyl alcohol (PVA) fiber reinforced cement composites, Mater. Struct. 44, 1179-1191 (2011).
  • 6. H. Kasagani, C.B.K Rao, The influence of hybrid glass fibers addition on stress – strain behavior of concrete, Cement-Wapno-Beton, 83, 361 – 372 (2016).
  • 7. N. Banthia, M. Sappakittipakorn, Toughness enhancement in steel fiber reinforced concrete, Cem. Concr. Res. 37, 1366-1372 (2007).
  • 8. B. Chen J. Liu, Contribution of hybrid fibers on the properties of the high-strength lightweight concrete having good workability, Cem. Concr. Res. 35, 913-917 (2005).
  • 9. L. Xu, L. Huang, Y. Chi, G. Mei, Tensile Behavior of Steel-Polypropylene Hybrid Fiber-Reinforced Concrete, ACI Mater. J. 113, 219-229 (2016).
  • 10. D. Feldman, Z. Zheng, Synthetic fibres for fibre concrete composites, MRS Online Proceedings Library, Archive 305 (1993).
  • 11. L. Hung, L. Xu, Experimental investigation on the seismic performance of steel–polypropylene hybrid fiber reinforced concrete columns, Constr. Build. Mater. 87, 16-17 (2015).
  • 12. M.A. Sanjuan, C. Andrade, A. Bentur, Effect of crack control in mortars containing polypropylene fibres on the corrosion of steel in a cementitious matrix, ACI Mater. J., 94, 134–141 (1997).
  • 13. K. Kovler, J. Sikuler, A. Bentur, Free and restrained shrinkage of fibre reinforced concrete with low polypropylene fibre content at early age, Fibre Reinforced Cement and Concrete, E&FN Spon, London, 92–101 (1992).
  • 14. Krenchel, H. and Shah, S. P. “Restrained Shrinkage Tests with Polypropylene Fiber Reinforced Concrete”, Fiber Reinforced Concrete and Applicntions. ACI SP-105, 141-158 (1987).
  • 15. N. Banthia, M. Azzabi, M. Pigeon, Restrained shrinkage cracking in fibre-reinforced cementitious composites, Mater. Struct. 26, 405-413 (1993).
  • 16. Yilmaz Akkaya, Surendra P.Shah, and Bruce Ankenman, Effect of Fiber Disperssion on Multiple Cracking of Cement Composites, Journal of Engineering Mechanics, Vol. 127, No. 4, pp. 311-337 (2000).
  • 17. Stroeven P., Babut R., Fracture mechanics and structural aspects of Concrete, Heron, 31(2), 15–44 (1986).
  • 18. Zhang, Y, Study on uniaxial compressive constitutive relationship and uniaxial tensile behavior of steel- polypropylene hybrid fiber reinforced concrete, Ph.D. thesis, Wuhan Univ, Wuhan (2010).
  • 19. C.X.quian, Development of hybrid fiber polypropylene - steel fiber reinforced concrete, cement and concrete research, Vol 30, 63-69 (2000).
  • 20. Qian C., Stroeven P., Fracture properties of concrete reinforced with steel-polypropylene hybrid fibres, Cement and Concrete Composites, Vol. 31, 343-51(2000).
  • 21. Naaman, A.E., Engineered steel fibers with optimal properties for reinforcement of cement composites, Journal of advanced concrete technology, 1(3), pp. 241-252 (2003).
  • 22. IS: 12269, Indian Standard Ordinary Portland cement, 53 Grade – Specification, Bureau of Indian Standards. New Delhi (2013).
  • 23. IS: 3812 Part-1, Pulverized fuel ash-specification, Bureau of Indian Standards, New Delhi (2003).
  • 24. IS: 15388, Silica Fume Specifications. Bureau of Indian Standards. New Delhi, (1959).
  • 25. IS: 383 (Reaffirmed 2002), Indian Standard Specification for Coarse and Fine Aggregates from Natural Sources for Concrete. Bureau of Indian Standards, New Delhi (2002).
  • 26. IS: 9103, Standard Specification for Chemical Admixtures for Concrete. Bureau of Indian Standards, New Delhi (1999).
  • 27. IS: 516, Methods of tests for concrete. Bureau of Indian Standards, New Delhi (1959).
  • 28. IS: 5816, Splitting Tensile Strength of Concrete - Method of Test. Bureau of Indian Standards, New Delhi (1999).
  • 29. Yilmaz Akkaya, Surendra P. Shah, and Bruce Ankenman, Effect of Fiber Dispersion on Multiple Cracking of Cement Composites. Journal of Engineering Mechanics, Vol. 127, No. 4, p. 311-337 (2001).
  • 30. P. Pierre, R. Pleau(1999), M. Pigeon, Mechanical properties of steel microfiber reinforced cement pastes and mortars, J. Mater. Civ. Eng. 11 (4) p.317– 32. (1999).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-06514d8e-d6e5-49ae-babc-b848334abc20
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.