Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Single-epoch positioning is a great challenge in recent research related to GNSS data processing. The Modified Ambiguity Function Approach (MAFA) method can be applied to perform this task. This method does not contain a stage of ambiguity resolution. However the final results take into account their integer nature. The functional model of the adjustment problem contains the conditions ensuring the integer nature of the ambiguities. A prerequisite for obtaining the correct solution is a mechanism ensuring appropriate convergence of the computational process. One of such mechanisms is a cascade adjustment, applying the linear combinations of the L1 and L2 signals with the integer coefficients and various wavelengths. Another method of increasing the efficiency of the MAFA method is based on the application of the integer de-correlation matrix to transform observation equations into equivalent, but better conditioned, observation equations. The next technique of improving the MAFA method is search procedure. This technique together with the de-correlation procedure allows to reduce the number of stages of the cascade adjustment and to obtain correct solution even in the case when a priori position is a few meters away from the actual position. This paper presents some problems related to search procedure. The results of single-epoch positioning using improved MAFA method are presented.
Słowa kluczowe
Rocznik
Tom
Strony
265--280
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
autor
- Institute of Geodesy, Univeristy of Warmia and Mazury in Olsztyn
Bibliografia
- BAKUŁA M. 2010. Network Code DGPS Positioning and Reliable Estimation of Position Accuracy, Survey Review, 42(315): 82–91.
- CELLMER S., WIELGOSZ P., RZEPECKA Z. 2010. Modified ambiguity function approach for GPS carrier phase positioning. Journal of Geodesy, 84: 267–275.
- CELLMER S. 2011a. The real time precise positioning using MAFA method. The 8th International Conference ENVIRONMENTAL ENGINEERING, selected papers, III, Vilnius, 1310–1314.
- CELLMER S. 2011b. Using the Integer Decorrelation Procedure to increase of the efficiency of the MAFA Method. Artificial Satellites, 46(3): 103–110.
- CELLMER S. 2012a. A Graphic Representation of the Necessary Condition for the MAFA Method. Transactions on Geoscience and Remote Sensing, 50(2): 482–488.
- CELLMER S. 2012b. On-the-fly ambiguity resolution using an estimator of the modified ambiguity covariance matrix for the GNSS positioning model based on phase data. Artificial Satellites, 47(3): 81–90.
- DACH R., HUGENTOBLER U., FRIDEZ P., MEINDL M 2007. BERNESE GPS Software Version 5.0. Astronomical Institute, University of Berne.
- GLENN J., SVEDENSEN G. 2006. Some properties of decorrelation techniques in the ambiguity space. GPS Solut, 10: 40–44.
- HASSIBI A., BOYD S. 1998. Integer parameter estimation in linear models with application to GPS. IEEE Trans SignallProc, 46: 2938–2952.
- HAN S., RIZOS C. 1996. Improving the computational efficiency of the ambiguity function algorithm. Journal of Geodesy, 70(6): 330–341.
- HOFMANN-WELLENHOF B., LICHTENEGGER H., WASLE E. 2008. GNSS-Global Navigation Satellite Systems – GPS, GLONASS, Galileo & more, Springer-Verlag Wien.
- JUNG J., ENGE P. 2000. Optimization of Cascade Integer Resolution with Three Civil GPS Frequencies Proc. ION GPS’2000, Salt Lake City, September.
- JONGE P. DE., TIBERIUS CH. 1996. The LAMBDA method for integer ambiguity estimation: implementation aspects Delft Geodetic Computing Centre LGR Series.
- LEICK A. 2004. GPS Satellite Surveying. 3rd edition, John Wiley and Sons, Inc.
- LIU L.T., HSu H.T., ZHU Y.Z., OU J.K. 1999. A new approach to GPS ambiguity decorrelation. Journal of Geodesy, 73: 478–490.
- TEUNISSEN P. J.G. 1995. The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation, Journal of Geodesy, 70: 65–82.
- TEUNISSEN P.J.G., KLEUSBERG A. 1998. GPS for Geodesy, (selected papers of International School lectures) Springer - Verlag, Berlin Heidelberg New York.
- WIELGOSZ P. 2011. Quality assessment of GPS rapid static positioning with weighted ionospheric parameters in generalized least squares. GPS Solutions, 15(2): 89–99.
- XU P. 2001. Random simulation and GPS decorrelation. Journal of Geodesy, 75: 408–423.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-064b05da-fb96-402e-aaa8-5263504fb2f0