PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Analysis of multiple-area renewable integrated hydro-thermal system considering artificial rabbit optimized PI (FOPD) cascade controller and redox flow battery

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The current task explores automatic generation control knowledge under old-style circumstances for a triple-arena scheme. Sources in area-1 are thermal-solar thermal (ST); thermal-geothermal power plant (GPP) in area-2 and thermal-hydro in area-3. An original endeavour has been set out to execute a new performance index named hybrid peak area integral squared error (HPA-ISE) and two-stage controller with amalgamation of proportional-integral and fractional order proportional-derivative, hence named as PI(FOPD). The performance of PI(FOPD) has been compared with varied controllers like proportional-integral (PI), proportional-integral-derivative (PID). Various investigation express excellency of PI(FOPD) controller over other controller from outlook regarding lessened level of peak anomalies and time duration for settling. Thus, PI(FOPD) controller’s excellent performance is stated when comparison is undergone for a three-area basic thermal system. The above said controller’s gains and related parameters are developed by the aid of Artificial Rabbit Optimization (ARO). Also, studies with HPA-ISE enhances system dynamics over ISE. Moreover, a study on various area capacity ratios (ACR) suggests that high ACR shows better dynamics. The basic thermal system is united with renewable sources ST in area-1 also GPP in area-2. Also, hydro unit is installed in area-3. The performance of this new combination of system is compared with the basic thermal system using PI(FOPD) controller. It is detected that dynamic presentation of new system is improved. Action in existence of redox flow battery is also examined which provides with noteworthy outcome. PI(FOPD) parameters values at nominal condition are appropriate for higher value of disturbance without need for optimization.
Rocznik
Strony
861--884
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wzory
Twórcy
  • Department of Electrical Engineering, Regent Education & Research Foundation Group of Institutions, Kolkata, West Bengal, India
  • Department of Electrical Engineering, Rajkiya Engineering College Sonbhadra, U.P., India
  • Institute of Chemical Technology, Indian Oil Odisha Campus, Bhubaneswar, India
  • Department of Electrical & Electronics Engineering, Aditya Engineering College, Surampalem, Andhra Pradesh, India
autor
  • Department of Electrical and Electronics Engineering, Gayatri Vidya Parishad College of Engineering (Autonomous), Visakhapatnam, Andhra Pradesh, India
  • Ingenium Research Group, University of Castilla-La Mancha, Spain
Bibliografia
  • [1] O.I. Elgerd: Electric energy systems theory: an introduction. Tata McGraw-Hill, New Delhi, 2007.
  • [2] P. Kundur: Power system stability and control. Tata McGraw Hill, New Delhi, 5th edition, 1993.
  • [3] H. Golpira, H. Bevrani and H. Golpira: Application of GA optimization for automatic generation control design in an interconnected power system. Energy Conversion and Management. 52(5) (2011), 2247-2255. DOI: 10.1016/j.enconman.2011.01.010.
  • [4] J. Nanda, A. Mangla andd S. Suri: Some new findings on automatic generation control of an interconnected hydrothermal system with conventional controllers. IEEE Transactions on Energy Conversion, 21(1), (2006), 187-194. DOI: 10.1109/TEC.2005.853757.
  • [5] Y. Sharma and L.C. Saikia: Automatic generation control of a multi-area ST-thermal power system using Grey Wolf optimizer algorithm based classical controllers. International Journal of Electrical Power and Energy Systems, 73 (2015), 853-862. DOI: 10.1016/j.ijepes.2015.06.005.
  • [6] A. Saha and L.C. Saikia: Utilization of ultra-capacitor in load frequency control under restructured STPP-thermal power systems using WOA optimized PIDN-FOPD controller. IET Generation, Transmission and Distribution, 11(13), (2017), 3318-3331. DOI: 10.1049/iet-gtd.2017.0083.
  • [7] W. Tasnin and L.C. Saikia: Maiden application of an sine-cosine algorithm optimised FO cascade controller in automatic generation control of multi-area thermal system incorporating dish-Stirling solar and geothermal power plants. IET Renewable Power Generation, 12(5), (2018), 585-597. DOI: 10.1049/iet-rpg.2017.0063.
  • [8] A. Saha and L.C. Saikia: Load frequency control of a wind-thermal-split shaft gas turbine-based restructured power system integrating FACTS and energy storage devices. International Transactions on Electrical Energy Systems, 29(3), (2018). DOI: 10.1002/etep.2756.
  • [9] I. Pan and S. Das: Fractional order AGC for distributed energy resources using robust optimization. IEEE Trans on Smart Grid, 7(5), (2016), 2175-2186. DOI: 10.1109/TSG.2015.2459766.
  • [10] J. Nanda, S. Mishra and L.C. Saikia: Maiden application of bacterial foraging-based optimization technique in multiarea automatic generation control. IEEE Transactions on Power Systems, 24(2), (2009), 602-609. DOI: 10.1109/TPWRS.2009.2016588.
  • [11] O. Singh and I. Nasiruddin: Optimal AGC regulator for multi-area interconnected power systems with parallel AC/DC links. Cogent Engineering Journal, 3(1), (2018). DOI: 10.1080/23311916.2016.1209272.
  • [12] K. Jagatheesan, B. Anand, S. Samanta, N. Dey, A.S. Ashour and V.E. Balas: Design of a proportional-integral-derivative controller for an automatic generation control of multi-area power thermal systems using firefly algorithm. IEEE/CAA Journal of Automatica Sinica, 6(2), (2019), 503-515. DOI: 10.1109/JAS.2017.7510436.
  • [13] M. Raju, L.C. Saikia, N. Sinha and D. Saha: Application of antlion optimizer technique in restructured automatic generation control of two-area hydro-thermal system considering governor dead band. Proceedings of the Conference on Innovations in Power and Advanced Computing Technologies, Vellore, India, (2017). DOI: 10.1109/IPACT.2017.8245099.
  • [14] L.C. Saikia, A. Chowdhury, N. Shakya, S. Shukla and P.K. Soni: AGC of a multi area gas-thermal system using firefly optimized IDF controller. Annual IEEE India Conference (INDICON), (2013), India.
  • [15] A. Rahman, L.C. Saikia and N. Sinha: Load frequency control of a hydro-thermal system under deregulated environment using biogeography-based optimised three-degree-of freedom integralderivative controller. IET Generation, Transmission and Distribution, 9(15), (2015), 2284-2293. DOI: 10.1049/iet-gtd.2015.0317.
  • [16] G. Sharma, K.R. Ibraheem Niazi and R.C. Bansal: Adaptive fuzzy critic based control design for AGC of power system connected via AC/DC tielines. IET Generation, Transmission and Distribution, 11(2), (2016), 560-569. DOI: 10.1049/iet-gtd.2016.1164.
  • [17] P. Dash, L.C. Saikia and N. Sinha: Flower pollination algorithm optimized PI-PD cascade controller in automatic generation control of a multi-area power system. International Journal of Electrical Power and Energy Systems, 82 (2016), 19-28. DOI: 10.1016/j.ijepes.2016.02.028.
  • [18] X.S. Yang: Nature-Inspired Meta-Heuristic Algorithms. Beckington, UK, Luniver Press, 2008.
  • [19] N.R. Babu, S.K. Bhagat, L.C. Saikia, T. Chiranjeevi, R. Devarapalli and F.P. García Márquez: A comprehensive review of recent strategies on automatic generation control/load frequency control in power systems. Archives of Computational Methods in Engineering, 30(1), (2022). DOI: 10.1007/s11831-022-09810-y.
  • [20] B. Venkateswara Rao, R. Devarapalli, H. Malik, S.K. Bali, F.P. García Márquez and T. Chiranjeevi: Wind integrated power system to reduce emission: An application of Bat algorithm. Journal of Intelligent and Fuzzy Systems, 42(2), (2022), 1041-1049. DOI: 10.3233/JIFS-189770.
  • [21] A. Saha, P. Dash, N.R. Babu, T. Chiranjeevi, B. Venkateswararao and Ł. Knypiński: Impact of spotted hyena optimized cascade controller in load frequency control of wave-solar-double compensated capacitive Energy storage based interconnected power system. Energies, 15(19), (2022). DOI: 10.3390/en15196959.
  • [22] X.S. Yang: Firefly algorithms for multimodal optimization. In: Stochastic Algorithms: Foundations and Applications, SAGA 2009, Lecture Notes in Computer Sciences, 5792, (2009), 169-178. DOI: 10.48550/arXiv.1003.1466.
  • [23] S. Mirjalili, S.M. Mirjalili and A. Lewis: Grey Wolf optimizer. Advances Engineering Software, 69 (2014), 46-61. DOI: 10.1016/j.advengsoft.2013.12.007.
  • [24] L. Wang, Q. Cao, Z. Zhang, S. Mirjalili and W. Zhao: Artificial rabbits optimization: A new bio-inspired meta-heuristic algorithm for solving engineering optimization problems. Engineering Applications of Artificial Intelligence, 114 (2022), DOI: 10.1016/j.engappai.2022.105082.
  • [25] N. Pathak and Z. Hu: Hybrid-peak-area-based performance index criteria for AGC of multi-area power systems. IEEE Transactions on Industrial Informatics, 15(11), (2019), 5792-5802. DOI: 10.1109/TII.2019.2905851.
  • [26] N.R. Babu and L.C. Saikia: Optimal location of accurate HVDC and Energy storage devices in a deregulated AGC integrated with PWTS considering HPA-ISE as performance index. Engineering Science and Technology, an International Journal, 33 (2022). DOI: 10.1016/j.jestch.2021.10.004.
  • [27] T. Chiranjeevi and R.K. Biswas: Discrete-time fractional optimal control. Mathematics, 5(2), (2017), 1-12. DOI: 10.3390/math5020025.
  • [28] T. Chiranjeevi and R.K. Biswas: Closed-form solution of optimal control problem of a fractional order system. Journal of King Saud University - Science, 31(4), (2019), 1042-1047. DOI: 10.1016/j.jksus.2019.02.010.
  • [29] T. Chiranjeevi, R.K. Biswas, R. Devarapalli, N.R. Babu and F.P. García Márquez: On optimal control problem subject to fractional order discrete time singular systems. Archives of Control Sciences, 31(4), (2021), 849-863. DOI: 10.24425/acs.2021.139733.
  • [30] T. Chiranjeevi, R. Devarapalli, N.R. Babu, K.B. Vakkapatla, R. Gowri Sankara Rao and F.P. García Márquez: Fixed terminal time fractional optimal control problem for discrete time singular system. Archives of Control Sciences, 32(3), (2022), 489-506. DOI: 10.24425/acs.2022.142846.
  • [31] A. Oustaloup, B. Mathieu, and P. Lanusse: The CRONE control of resonant plants: Application to a flexible transmission. European Journal of Control, 1(2), (1995), 113-121. DOI: 10.1016/S0947-3580(95)70014-0.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-064b0211-b197-4b92-b26a-73da5bd72cbf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.