PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effectiveness of nano-SiO2 on the mechanical, durability, and microstructural behavior of geopolymer concrete at different curing ages

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The invention and development of new binding construction materials to replace conventional Portland cement are now essential from the perspective of environmental concerns. Geopolymers are a potential solution to this problem. Geopolymers are innovative cementitious materials with the potential to replace Portland cement in manufacturing concrete composites. Nanomaterials offer novel features and performances to geopolymer composites by enhancing the composite's microstructural characteristics by forming extra calcium-silicate-hydrate (C-S-H), sodium-alumino-silicate-hydrate (N-A-S-H), and calcium-alumino-silicate-hydrate (C-A-S-H) gels, as well as the filling nano-pores in the matrix. In this study, extensive experimental laboratory works have been conducted on around 250 geopolymer concrete (GPC) specimens to investigate the effects of adding different dosages (1, 2, 3, and 4%) of nano-silica (NS) on the fresh, compressive strength, splitting tensile strength, flexural strength, stress-strain behaviors, modulus of elasticity, water absorption, rapid chloride permeability, resistance to an acidic environment, and microstructural properties like scanning electron microscopy (SEM) and X-ray diffraction (XRD) of geopolymer concrete composites. As a result of the addition of NS, it was found that the largest improvement in compressive strength was occurred at 3% NS, which was 6.3, 13.4, 20.5, 21, and 21.9% at 3, 7, 28, 90, and 180 days, respectively, compared to the control GPC mixture. Also, the maximum improvement in water absorption was nearly similar for 2 and 3% of NS content, which was 32.2 and 38% at 28 and 90 days, respectively, compared to the control GPC mixture. Furthermore, according to SEM observations, the addition of NS improved the microstructural characteristics of the GPC specimens due to the formation of additional geopolymerization products, as revealed by XRD analyses. However, the fresh characteristics of the geopolymer concrete mixtures are reduced due to the addition of NS to the GPC mixtures.
Rocznik
Strony
art. no. e129, 2023
Opis fizyczny
Bibliogr. 81 poz., rys., tab., wykr.
Twórcy
  • Civil Engineering Department, College of Engineering, University of Sulaimani, Sulaimaniyah, Kurdistan Region, Iraq
  • Civil Engineering Department, Komar University of Science and Technology, Sulaimani, Kurdistan Region, Iraq
  • Civil Engineering Department, College of Engineering, University of Sulaimani, Sulaimaniyah, Kurdistan Region, Iraq
  • Civil Engineering Department, College of Engineering, University of Sulaimani, Sulaimaniyah, Kurdistan Region, Iraq
Bibliografia
  • 1. Habert G, Miller SA, John VM, Provis JL, Favier A, Horvath A, Scrivener KL. Environmental impacts and decarbonization strategies in the cement and concrete industries. Nat Rev Earth Environ. 2020;1(11):559-73. https://doi.org/10.1038/s43017-020-0093-3.
  • 2. Gartner E. Industrially interesting approaches to “low-CO2” cements. Cem Concr Res. 2004;34(9):1489-98. https://doi.org/10.1016/j.cemconres.2004.01.021.
  • 3. Guo X, Shi H, Dick WA. Compressive strength and microstructural characteristics of class C fly ash geopolymer. Cement Concr Compos. 2010;32(2):142-7. https://doi.org/10.1016/j.cemconcomp.2009.11.003.
  • 4. Ahmed HU, Mohammed AS, Faraj RH, Qaidi SM, Mohammed AA. Compressive strength of geopolymer concrete modified with nano-silica: experimental and modeling investigations. Case Stud Constr Mater. 2022. https://doi.org/10.1016/j.cscm.2022.e01036.
  • 5. Abdel-Gawwad HA, Abo-El-Enein SA. A novel method to produce dry geopolymer cement powder. HBRC J. 2016;12(1):13-24.
  • 6. Weil M, Dombrowski K, Buchwald A. Life-cycle analysis of geopolymers. In: Weil M, editor. Geopolymers. Sawston: Wood-head Publishing; 2009. p. 194-210.
  • 7. Davidovits J. Polymers and geopolymers. Geopolymer chemistry and applications. 4th ed. Saint Quenti: Institut Geopolymere; 2015.
  • 8. Ahmed HU, Mohammed AA, Rafiq S, Mohammed AS, Mosavi A, Sor NH, Qaidi S. Compressive strength of sustainable geopolymer concrete composites: a state-of-the-art review. Sustainability. 2021;13(24):13502. https://doi.org/10.3390/su132413502.
  • 9. Mohammed AA, Ahmed HU, Mosavi A. Survey of mechanical properties of geopolymer concrete: a comprehensive review and data analysis. Materials. 2021;14(16):4690. https://doi.org/10.3390/ma14164690.
  • 10. Hassan A, Arif M, Shariq M. Effect of curing condition on the mechanical properties of fly ash-based geopolymer concrete. SN Appl Sci. 2019;1(12):1-9. https://doi.org/10.1007/s42452-019-1774-8.
  • 11. Ahmed HU, Mohammed AA, Mohammad AS. The role of nanomaterials in geopolymer concrete composites: a state-of-the-art review. J Build Eng. 2022. https://doi.org/10.1016/j.jobe.2022.104062.
  • 12. Sharif HH. Fresh and mechanical characteristics of eco-efficient geopolymer concrete incorporating nano-silica: an overview. Kurdistan J Appl Res. 2021. https://doi.org/10.24017/science.2021.2.6.
  • 13. Lazaro A, Yu QL, Brouwers HJ. Nanotechnologies for sustainable construction. In: Khatib JM, editor. Sustainability of construction materials. Sawston: Woodhead Publishing; 2016. p. 55-78.
  • 14. Faraj RH, Ahmed HU, Rafiq S, Sor NH, Ibrahim DF, Qaidi SM. Performance of self-compacting mortars modified with nanoparticles: a systematic review and modeling. Clean Mater. 2022. https://doi.org/10.1016/j.clema.2022.100086.
  • 15. Assaedi H, Shaikh FUA, Low IM. Influence of mixing methods of nano silica on the microstructural and mechanical properties of flax fabric reinforced geopolymer composites. Constr Build Mater. 2016;123:541-52. https://doi.org/10.1016/j.conbuildmat.2016.07.049.
  • 16. Jindal BB, Sharma R. The effect of nanomaterials on properties of geopolymers derived from industrial by-products: a state-of-the-art review. Constr Build Mater. 2020;252: 119028.
  • 17. Behfarnia K, Rostami M. Effects of micro and nanoparticles of SiO2 on the permeability of alkali activated slag concrete. Constr Build Mater. 2017;131:205-13. https://doi.org/10.1016/j.conbuildmat.2016.11.070.
  • 18. Mustakim SM, Das SK, Mishra J, Aftab A, Alomayri TS, Assaedi HS, Kaze CR. Improvement in fresh, mechanical and microstructural properties of fly ash-blast furnace slag based geopolymer concrete by addition of nano and micro silica. SILICON. 2021;13(8):2415-28. https://doi.org/10.1007/s12633-020-00593-0.
  • 19. Cevik A, Alzeebaree R, Humur G, Niş A, Gulşan ME. Effect of nano-silica on the chemical durability and mechanical performance of fly ash based geopolymer concrete. Ceram Int. 2018;44(11):12253-64. https://doi.org/10.1016/j.ceramint.2018.04.009.
  • 20. Ibrahim M, Johari MAM, Maslehuddin M, Rahman MK. Influence of nano-SiO2 on the strength and microstructure of natural pozzolan based alkali activated concrete. Constr Build Mater. 2018;173:573-85. https://doi.org/10.1016/j.conbuildmat.2018.04.051.
  • 21. Kotop MA, El-Feky MS, Alharbi YR, Abadel AA, Binyahya AS. Engineering properties of geopolymer concrete incorporating hybrid nano-materials. Ain Shams Eng J. 2021;12(4):3641-7. https://doi.org/10.1016/j.asej.2021.04.022.
  • 22. Nuaklong P, Sata V, Wongsa A, Srinavin K, Chindaprasirt P. Recycled aggregate high calcium fly ash geopolymer concrete with inclusion of OPC and nano-SiO2. Constr Build Mater. 2018;174:244-52. https://doi.org/10.1016/j.conbuildmat.2018.04.123.
  • 23. Saini G, Vattipalli U. Assessing properties of alkali activated GGBS based self-compacting geopolymer concrete using nanosilica. Case Stud Constr Mater. 2020;12: e00352. https://doi.org/10.1016/j.cscm.2020.e00352.
  • 24. Shahrajabian F, Behfarnia K. The effects of nano particles on freeze and thaw resistance of alkali-activated slag concrete. Constr Build Mater. 2018;176:172-8. https://doi.org/10.1016/j.conbuildmat.2018.05.033.
  • 25. Alzeebaree R. Bond strength and fracture toughness of alkali activated self-compacting concrete incorporating metakaolin or nanosilica. Sustainability. 2022;14(11):6798. https://doi.org/10.3390/su14116798.
  • 26. Mohammedameen A. Performance of alkali-activated self-compacting concrete with incorporation of nanosilica and metakaolin. Sustainability. 2022;14(11):6572. https://doi.org/10.3390/su14116572.
  • 27. Ahmed HU, Mohammed AS, Qaidi SMA, Faraj RH, Sor NH, Mohammed AA. Compressive strength of geopolymer concrete composites: a systematic comprehensive review, analysis and modeling. Eur J Environ Civ Eng. 2022. https://doi.org/10.1080/19648189.2022.2083022.
  • 28. Reddy MS, Dinakar P, Rao BH. Mix design development of fly ash and ground granulated blast furnace slag based geopolymer concrete. J Build Eng. 2018;20:712-22.
  • 29. Li N, Shi C, Zhang Z, Wang H, Liu Y. A review on mixture design methods for geopolymer concrete. Compos B Eng. 2019;178: 107490.
  • 30. Nuaklong P, Jongvivatsakul P, Pothisiri T, Sata V, Chindaprasirt P. Influence of rice husk ash on mechanical properties and fire resistance of recycled aggregate high-calcium fly ash geopolymer concrete. J Clean Produc. 2020;252:119797. https://doi.org/10.1016/j.jclepro.2019.119797.
  • 31. Deb PS, Sarker PK, Barbhuiya S. Sorptivity and acid resistance of ambient-cured geopolymer mortars containing nano-silica. Cement Concr Compos. 2016;72:235-45. https://doi.org/10.1016/j.cemconcomp.2016.06.017.
  • 32. Ramezanianpour AA, Moeini MA. Mechanical and durability properties of alkali activated slag coating mortars containing nanosilica and silica fume. Constr Build Mater. 2018;163:611-21. https://doi.org/10.1016/j.conbuildmat.2017.12.062.
  • 33. Durak U, Karahan O, Uzal B, İlkentapar S, Atiş CD. Influence of nano SiO2 and nano CaCO3 particles on strength, workability, and microstructural properties of fly ash-based geopolymer. Struct Concr. 2021;22:E352-67. https://doi.org/10.1002/suco.201900479.
  • 34. Adak D, Sarkar M, Mandal S. Effect of nano-silica on strength and durability of fly ash based geopolymer mortar. Constr Build Mater. 2014;70:453-9. https://doi.org/10.1016/j.conbuildmat.2014.07.093.
  • 35. Luo Z, Li W, Li P, Wang K, Shah SP. Investigation on effect of nanosilica dispersion on the properties and microstructures of fly ash-based geopolymer composite. Constr Build Mater. 2021;282:122690. https://doi.org/10.1016/j.conbuildmat.2021.122690.
  • 36. Adak D, Sarkar M, Mandal S. Structural performance of nanosilica modified fly-ash based geopolymer concrete. Constr Build Mater. 2017;135:430-9. https://doi.org/10.1016/j.conbuildmat.2016.12.111.
  • 37. Phoo-ngernkham T, Chindaprasirt P, Sata V, Hanjitsuwan S, Hatanaka S. The effect of adding nano-SiO2 and nano-Al2O3 on properties of high calcium fly ash geopolymer cured at ambient temperature. Mater Des. 2014;55:58-65. https://doi.org/10.1016/j.matdes.2013.09.049.
  • 38. Their JM, Ozakca M. Developing geopolymer concrete by using cold-bonded fly ash aggregate, nano-silica, and steel fiber. Constr Build Mater. 2018;180:12-22. https://doi.org/10.1016/j.conbuildmat.2018.05.274.
  • 39. Sun K, Peng X, Wang S, Zeng L, Ran P, Ji G. Effect of nano-SiO2 on the efflorescence of an alkali-activated metakaolin mortar. Constr Build Mater. 2020;253:118952. https://doi.org/10.1016/j.conbuildmat.2020.118952.
  • 40. Etemadi M, Pouraghajan M, Gharavi H. Investigating the effect of rubber powder and nano silica on the durability and strength characteristics of geopolymeric concretes. J Civ Eng Mater Appl. 2020;4(4):243-52. https://doi.org/10.22034/jcema.2020.119979.
  • 41. Naskar S, Chakraborty AK. Effect of nano materials in geopolymer concrete. Perspect Sci. 2016;8:273-5. https://doi.org/10.1016/j.pisc.2016.04.049.
  • 42. Singh B, Ishwarya G, Gupta M, Bhattacharyya SK. Geopolymer concrete: a review of some recent developments. Constr Build Mater. 2015;85:78-90. https://doi.org/10.1016/j.conbuildmat.2015.03.036.
  • 43. Zhang P, Gao Z, Wang J, Guo J, Hu S, Ling Y. Properties of fresh and hardened fly ash/slag based geopolymer concrete: a review. J Clean Prod. 2020;270:122389. https://doi.org/10.1016/j.jclepro.2020.122389.
  • 44. Ibrahim M, Johari MAM, Rahman MK, Maslehuddin M, Mohamed HD. Enhancing the engineering properties and microstructure of room temperature cured alkali activated natural pozzolan based concrete utilizing nanosilica. Constr Build Mater. 2018;189:352-65. https://doi.org/10.1016/j.conbuildmat.2018.08.166.
  • 45. Yip CK, Lukey GC, Van Deventer JS. The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation. Cem Concr Res. 2005;35(9):1688-97. https://doi.org/10.1016/j.cemconres.2004.10.042.
  • 46. Hamed N, El-Feky MS, Kohail M, Nasr ESA. Effect of nano-clay de-agglomeration on mechanical properties of concrete. Constr Build Mater. 2019;205:245-56. https://doi.org/10.1016/j.conbuildmat.2019.02.018.
  • 47. Puligilla S, Mondal P. Role of slag in microstructural development and hardening of fly ash-slag geopolymer. Cem Concr Res. 2013;43:70-80. https://doi.org/10.1016/j.cemconres.2012.10.004.
  • 48. Mahboubi B, Guo Z, Wu H. Evaluation of durability behavior of geopolymer concrete containing nano-silica and nano-clay additives in acidic media. J Civ Eng Mater Appl. 2019;3(3):163-71. https://doi.org/10.22034/JCEMA.2019.95839.
  • 49. Rabiaa E, Mohamed RAS, Sofi WH, Tawfik TA. Developing geopolymer concrete properties by using nanomaterials and steel fibers. Adv Mater Sci Eng. 2020. https://doi.org/10.1155/2020/5186091.
  • 50. Vyas S, Mohammad S, Pal S, Singh N. Strength and durability performance of fly ash based geopolymer concrete using nano silica. Int J Eng Sci Technol. 2020;4(2):1-12. https://doi.org/10.29121/ijoest.v4.i2.2020.73.
  • 51. Emad H, Soufi W, Elmannaey A, Abd-El-Aziz M, Hany EG. Effect of nano-silica on the mechanical properties of slag geopolymer concrete. 2018.
  • 52. Gao K, Lin KL, Wang D, Hwang CL, Tuan BLA, Shiu HS, Cheng TW. Effect of nano-SiO2 on the alkali-activated characteristics of metakaolin-based geopolymers. Constr Build Mater. 2013;48:441-7. https://doi.org/10.1016/j.conbuildmat.2013.07.027.
  • 53. Assaedi H, Alomayri T, Shaikh F, Low IM. Influence of nano silica particles on durability of flax fabric reinforced geopolymer composites. Materials. 2019;12(9):1459. https://doi.org/10.3390/ma12091459.
  • 54. Samadi M, Shah KW, Huseien GF, Lim NHAS. Influence of glass silica waste nano powder on the mechanical and microstructure properties of alkali-activated mortars. Nanomaterials. 2020;10(2):324. https://doi.org/10.3390/nano10020324.
  • 55. Dao DV, Tran HV, Ly HB, Le TT. Calibration of a stress-strain response for geopolymer concrete under axial compressive load. Proc Instit Mech Eng Part L J Mater Des Appl. 2022. https://doi.org/10.1177/14644207221075912.
  • 56. Farhan NA, Sheikh MN, Hadi MN. Investigation of engineering properties of normal and high strength fly ash based geopolymer and alkali-activated slag concrete compared to ordinary Portland cement concrete. Constr Build Mater. 2019;196:26-42. https://doi.org/10.1016/j.conbuildmat.2018.11.083.
  • 57. Ghafoor MT, Khan QS, Qazi AU, Sheikh MN, Hadi MNS. Influence of alkaline activators on the mechanical properties of fly ash based geopolymer concrete cured at ambient temperature. Constr Build Mater. 2021;273:121752. https://doi.org/10.1016/j.conbuildmat.2020.121752.
  • 58. Thomas RJ, Peethamparan S. Alkali-activated concrete: engineering properties and stress-strain behavior. Constr Build Mater. 2015;93:49-56. https://doi.org/10.1016/j.conbuildmat.2015.04.039.
  • 59. Huseien GF, Hamzah HK, Sam ARM, Khalid NHA, Shah KW, Deogrescu DP, Mirza J. Alkali-activated mortars blended with glass bottle waste nano powder: Environmental benefit and sustainability. J Clean Prod. 2020;243:118636. https://doi.org/10.1016/j.jclepro.2019.118636.
  • 60. Zhang P, Wang K, Wang J, Guo J, Hu S, Ling Y. Mechanical properties and prediction of fracture parameters of geopolymer/alkali-activated mortar modified with PVA fiber and nano-SiO2. Ceram Int. 2020;46(12):20027-37. https://doi.org/10.1016/j.ceramint.2020.05.074.
  • 61. Ekinci E, Turkmen İ, Kantarci F, Karakoc MB. The improvement of mechanical, physical and durability characteristics of volcanic tuff based geopolymer concrete by using nano silica, micro silica and Styrene-Butadiene Latex additives at different ratios. Constr Build Mater. 2019;201:257-67. https://doi.org/10.1016/j.conbuildmat.2018.12.204.
  • 62. AngelinLincy G, Velkennedy R. Experimental optimization of metakaolin and nanosilica composite for geopolymer concrete paver blocks. Struct Concr. 2021;22:E442-51. https://doi.org/10.1002/suco.201900555.
  • 63. Zidi Z, Ltifi M, Zafar I. Synthesis and attributes of nano-SiO2 local metakaolin based-geopolymer. J Build Eng. 2021;33:101586. https://doi.org/10.1016/j.jobe.2020.101586.
  • 64. Ariffin MAM, Bhutta MAR, Hussin MW, Tahir MM, Aziah N. Sulfuric acid resistance of blended ash geopolymer concrete. Constr Build Mater. 2013;43:80-6. https://doi.org/10.1016/j.conbuildmat.2013.01.018.
  • 65. Thokchom S. Fly ash geopolymer pastes in sulphuric acid. Int J Eng Innov Res. 2014;3(6):943-7.
  • 66. Bakharev T, Sanjayan JG, Cheng YB. Resistance of alkali-activated slag concrete to acid attack. Cem Concr Res. 2003;33(10):1607-11. https://doi.org/10.1016/S0008-8846(03)00125-X.
  • 67. Israel D, Macphee DE, Lachowski EE. Acid attack on pore-reduced cements. J Mater Sci. 1997;32(15):4109-16. https://doi.org/10.1023/A:1018610109429.
  • 68. Belkowitz JS, Belkowitz WB, Moser RD, Fisher FT, Weiss CA. The influence of nano silica size and surface area on phase development, chemical shrinkage and compressive strength of cement composites. In: Sobolev K, Shah SP, editors. Nanotechnology in construction. Cham: Springer; 2015. p. 207-12. https://doi.org/10.1007/978-3-319-17088-6_26.
  • 69. Hartman RL, Fogler HS. Understanding the dissolution of zeolites. Langmuir. 2007;23(10):5477-84. https://doi.org/10.1021/la063699g.
  • 70. Patel Y, Patel IN, Shah MJ. Experimental investigation on compressive strength and durability properties of geopolymer concrete incorporating with nano silica. J Impact Factor. 2015;6(5):135-43.
  • 71. Bassuoni MT, Nehdi ML. Resistance of self-consolidating concrete to sulfuric acid attack with consecutive pH reduction. Cem Concr Res. 2007;37(7):1070-84. https://doi.org/10.1016/j.cemconres.2007.04.014.
  • 72. Zhuang XY, Chen L, Komarneni S, Zhou CH, Tong DS, Yang HM, Wang H, et al. Fly ash-based geopolymer: clean production, properties and applications. J Clean Prod. 2016;125:253-67. https://doi.org/10.1016/j.jclepro.2016.03.019.
  • 73. Chindaprasirt P, Rattanasak U, Taebuanhuad S. Resistance to acid and sulfate solutions of microwave-assisted high calcium fly ash geopolymer. Mater Struct. 2013;46(3):375-81. https://doi.org/10.1617/s11527-012-9907-1.
  • 74. Kohail M, Khalaf MA. The efficiency of chloride extraction using un-galvanized steel anode. Ain Shams Eng J. 2021;12(2):1353-60. https://doi.org/10.1016/j.asej.2020.11.001.
  • 75. Adak D, Sarkar M, Maiti M, Tamang A, Mandal S, Chattopadhyay B. Anti-microbial efficiency of nano silver-silica modified geopolymer mortar for eco-friendly green construction technology. RSC Adv. 2015;5(79):64037-45. https://doi.org/10.1039/C5RA12776A.
  • 76. Sastry KGK, Sahitya P, Ravitheja A. Influence of nano TiO2 on strength and durability properties of geopolymer concrete. Mater Today Proc. 2021;45:1017-25. https://doi.org/10.1016/j.matpr.2020.03.139.
  • 77. Raj RS, Arulraj GP, Anand N, Kanagaraj B, Lubloy E, Naser MZ. Nanomaterials in geopolymer composites: a review. Dev Built Environ. 2022. https://doi.org/10.1016/j.dibe.2022.100114.
  • 78. Fu Q, Xu W, Zhao X, Bu M, Yuan Q, Niu D. The microstructure and durability of fly ash-based geopolymer concrete: a review. Ceram Int. 2021;47(21):29550-66. https://doi.org/10.1016/j.ceramint.2021.07.190.
  • 79. Khater HM. Effect of nano-silica on microstructure formation of low-cost geopolymer binder. Nanocomposites. 2016;2(2):84-97. https://doi.org/10.1080/20550324.2016.1203515.
  • 80. Deb PS, Sarker PK, Barbhuiya S. Effects of nano-silica on the strength development of geopolymer cured at room temperature. Constr Build Mater. 2015;101:675-83. https://doi.org/10.1016/j.conbuildmat.2015.10.044.
  • 81. Khater HM, Abd elGawaad HA. Characterization of alkali activated geopolymer mortar doped with MWCNT. Constr Build Mater. 2016;102:329-37. https://doi.org/10.1016/j.conbuildmat.2015.10.121.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-064901e6-0dd4-494e-92ee-3dfe048fadab
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.