Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Uncontrolled emissions of landfill gas may contribute significantly to climate change, since its composition represents a high fraction of methane, a greenhouse gas with 100- year global warming potential 25 times that of carbon dioxide. Landfill cover could create favourable conditions for methanotrophy (microbial methane oxidation), an activity of using bacteria to oxidize methane to carbon dioxide. This paper presents a brief review of methanotrophic activities in landfill cover. Emphasis is given to the effects of cover materials, environmental conditions and landfill vegetation on the methane oxidation potential, and to their underlying effect mechanisms. Methanotrophs communities and methane oxidation kinetics are also discussed. Results from the overview suggest that well-engineered landfill cover can substantially increase its potential for reducing emissions of methane produced in landfill to the atmosphere.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
115--126
Opis fizyczny
Bibliogr. 67 poz., tab., wykr.
Twórcy
autor
- School of Environment and Resource, Zhejiang Agricultural and Forestry University, 88 Huancheng North Road, 311300, Lin’an, China
- Faculty of Environmental Engineering, Lublin University of Technology, ul. Nadbystrzycka 40 B, 20-618, Lublin, Poland
autor
- Faculty of Environmental Engineering, Lublin University of Technology, ul. Nadbystrzycka 40 B, 20-618, Lublin, Poland
Bibliografia
- [1] ICPP: Forster, P., Ramaswa my, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D.W. Haywood, J., Lean, J., Lowe, D.C., Myhre, G., Nganga, J., Prinn, R., Raga, G., Schulz, M., & Van Dorland, R. (2007). Changes in Atmospheric Constituents and in Radiative Forcing. In: Climate Change 2007: The Physical ScienceBasis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panelon Climate Change. Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (Eds.), New York:Cambridge University Press, Cambridge.
- [2] Juda-Rezler K. (2010). New Challenges in Air Quality and Climate Modeling, Arch. Environ. Prot., 36, 3-28.
- [3] Themelis N.J., & Ulloa, P.A. (20 07). Methane generation in landfills. Renew. Energy, 32, 1243-1257.
- [4] USEPA: Development document for final effluent limitations guidelines and standards for the landfillspointsource category, EPA-821-R-99-109, Washington, DC; 2000; http://www.epa.gov.
- [5] Heyer J., Galchenko, F.V., & Dunfi eld, P.F. (2002). Molecular phylogeny of type methane - oxidizing bacteria isolated from various environments. Microbiology, 148, 2831-2846.
- [6] Jaatinena K., Knief, C., Dunfi eld, P.F., Yrjäläc, K., & Fritzea, H. (2004). Methanotrophic bacteria in boreal forest soil after fire. FEMS Microbiol. Lett., 50, 195-202.
- [7] Pawłowska M., Rożej, A., & Stępniews ki, W. (2011). The effect of bed properties on methane removal in an aerated biofilter - Model studies, Waste Manage., 31, 903-913.
- [8] Pawłowska M., & Stępniewski, W. (2006 ). An influence of methane concentration on the methanotrophic activity of a model landfill cover. Ecol. Eng., 26, 392-395.
- [9] Stępniewski W., & Pawłowska, M. (1996). A Possibility to Reduce Methane Emission from Landfills by its Oxidation in the Soil Cover. In. L. Pawłowski, et al. (Eds.), Chemistry from the Protection of the Environment, 2. Environmental Science Research. New York: Plenum Press., 75-92.
- [10] Huber-Humer M., Röder, S., & Lechner, P. (20 09). Approaches to assess biocover performance on landfills. Waste Manage., 29, 2092-2104.
- [11] Albanna M., Fernandes, L., & Warith, M. (20 07). Methane oxidation in landfill cover soil: the combined effects of moisture content, nutrient addition, and cover thickness. J. Environ. Eng. Sci., 6, 191-200.
- [12] Wang H., Einola, J., Heinonen, M., Kulomaa , M., & Rintala, J. (2008). Group-specific quantification of methanotrophs in landfill gas-purged laboratory biofilters by tyramide signal amplification-fluorescence in situ hybridization. Bioresour. Technol., 99, 6426-6433.
- [13] Watzinger A., Stemmer, M., Pfeffer, M., Ras che, F., & Reichenauer, T.G. (2008). Methanotrophic communities in a landfill cover soil as revealed by [13C] PLFAs and respiratory quinones: Impact of high methane addition and landfill leachate irrigation. Soil Biol. Biochem., 40, 751-762.
- [14] Pawłowska M. (1999). Możliwość zmniejszenia emisji metanu z wysypisk na drodze jego biochemicznegoutleniania w rekultywacyjnym nadkładzie glebowym (Posibility of a reduction of methane emission fromlandfi lls by its biochemical oxidation in landfill cover soil - a model study). Lublin: Technical University of Lublin Publishing House.
- [15] Chanton J.P., Powelson, D.K., & Green, R.B. (2009). Methane oxidation in landfill cover soils, is a 10% default value reasonable? J. Environ. Qual., 38, 654-663.
- [16] IPCC: Guidelines for national greenhouse gas inventories.
- [17] Pawłowska M. (2010). Effi ciency of microbiological oxidation of methane in biofilter. In. L. Pawłowski, M.R. Dudzińska, A. Pawłowski (Eds.), Environmental Engineering III. (pp. 409-416). Boca Raton: CRC-Press Taylor & Francis Group.
- [18] Wang J., Xia, F., Bai, Y., Fang, C., Shen, D., & He , R. (2011). Methane oxidation in landfill waste biocover soil: Kinetics and sensitivity to ambient conditions. Waste Manage., 31, 864-870.
- [19] Wang Y., Wu, W., Ding, Y., Liu, W., Perera, A., Ch en, Y., & Devare, M. (2008). Methane Oxidation activity and bacterial community composition in a simulated landfill cover soil is influenced by the growth of Chenopodium album L., Soil Biol. Biochem., 40, 2452-2459.
- [20] Pawłowska M., Stępniewski, W., & Czerwiński, J. (2 003). The Effect of Texture on Methane Oxidation Capacity on Sand Layer - a Model Laboratory Study. In. L. Pawłowski, M.R. Dudzińska, A. Pawłowski (Eds.), Environmental Engineering Studies, Polish Research on the Way to EU (pp. 339-354). New York: Kluwer Academic/Plenum Press.
- [21] Whalen S.C., Reeburgh, W.S., & Sandbeck, K.A. (19 90). Rapid Methane Oxidation in a Landfill Cover Soil., Appl Environ Microbiol., 56, 3405-3411.
- [22] Horz H.P., Raghubanshi, A.S., Heyer, J., Kammann, C., Conrad, R., Dunfi eld, P.F. (2002). Activity and community structure of methane-oxidising bacteria in a wet meadow soil. FEMS Microbiol. Ecol., 41, 247-257.
- [23] Knoblauch C., Zimmermann, U., Blumenberg, M., Michae lis, W., & Pfeiffer, E. (2008). Methane turnover and temperature response of methane-oxidizing bacteria in permafrost-affected soils of northeast Siberia. Soil Biol. Biochem., 40, 3004-3013.
- [24] Bodrossy L., Kovács, K.L., McDonald, I.R., & Murrell, J.C. (1999). A novel thermophilic methane-oxidising γ-Proteobacterium. FEMS Microbiol. Lett., 170, 335-341.
- [25] Dunfi eld P.F., Yuryev, A., Senin, P., Smirnova, A.V. , Stott, M.B., Hou, S., Ly, B., Saw, J.H., Zhou, Z., Ren, Y., Wang, J., Mountain, B.W., Crowe, M.A., Weatherby, T.M.P., Bodelier, L.E., Liesack, W., Feng, L.,Wang, L., & Alam, M. (2007). Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature, 450, 879-882.
- [26] Kaluzhnaya M., Khmelenina, V., Eshinimaev, B., Suzina, N., Nikitin, D., Solonin, A., Lin, J., McDonald, I., Murrell, C., & Trotsenko, Y. (2001). Taxonomic Characterization of New Alkaliphilic and Alkalitolerant Methanotrophs from Soda Lakes of the Southeastern Transbaikal Region and description of Methylomicrobium buryatense sp.nov., Sys. Appl. Microbiol., 24, 166-176.
- [27] Hanson R.S., Hanson, T.E. (1996). Methanotrophic bacteria. Microbiol. Rev., 60, 439-471.
- [28] Jiang H., Chen, Y., Jiang, P., Zhang, C., Smith, T.J., Murre ll, J.C., & Xing, X. (2010). Methanotrophs: Multifunctional bacteria with promising applications in environmental bioengineering. Biochem. Eng. J., 49, 277-288.
- [29] Stoecker K., Bendinger, B., Schöning, B., Nielsen, P. H., N ielsen, J.L., Baranyi, C., Toenshoff, E.R., Daims, H., & Wagner, M. (2006). Cohn’s Crenothrix is a filamentous methane oxidizer with an unusual methane monooxygenase. PNAS.103, 2363-2367.
- [30] Vigliotta G., Nutricati, E., Carata, E., Tredici, S.M., De S tefano, M., Pontieri, P., Massardo, D.R., Prati, M. V., De Bellis, L., & Alifano, D.P. (2007). Clonothrixfusca Roze 1896, a Filamentous, Sheathed, Methanotrophicγ-Proteobacterium. Appl. Environ. Microbiol., 73, 3556-3565.
- [31] Lieberman R.L., Rosenzweig, A.C. (2004). Biological Methane Oxidation: Regulation, Biochemistry, and Active Site Structure of Particulate Methane Monooxygenase. Crit. Rev. Biochem. Mol. Biol., 147-164.
- [32] Gómez K.E., Gonzalez-Gil, G., Lazzaro, A., & Schroth, M.H. (200 9). Quantifying methane oxidation in a landfill-cover soil by gas push-pull tests. Waste Manage., 29, 2518-2526.
- [33] Streese-Kleeberg J., Rachor, I., Gebert, J., & Stegmann, R. (2011). Use of gas push-pull tests for the measurement of methane oxidation in different landfill cover soils. Waste Manage., 31, 995-1001.
- [34] Powelson D.K., Chanton, J., Abichou, T., & Morales, J. (2006). Methane oxidation in water-spreading and compost biofilters. Waste Manag. Res., 24, 528-536.
- [35] Stein V.B., Hettiaratchi, & J.P.A. (2001). Methane oxidation in three Alberta soils: influence of soil parameters and methane flux rate. Environ. Technol., 22, 101-111.
- [36] De Visscher A., Thomas, D., Boeckx, P., & Van Cleemput, O. (1999). Methane oxidation in simulated landfill cover soil environments., Environ. Sci. Technol., 33, 1854-1859.
- [37] Wilshusen J.H., Hettiaratchi, J.P.A., Stein, V.B. (2004). Long-term behavior of passively aerated compost methanotrophic biofilter columns. Waste Manage., 24, 643-653.
- [38] Schroth M.H., Eugster, W., Gómez, K.E., Gonzalez-Gil, G., Niklaus, P.A. , Oester, P. (2012). Above- and below-ground methane fluxes and methanotrophic activity in a landfill-cover soil. Waste Manage., 32, 879-889.
- [39] Bogner J., Spokas, K., Burton, E., Sweeney, R., & Corona, V. (1995). Landfills as atmospheric methane sources and sinks. Chemosphere, 31, 4119-4130.
- [40] Rachor I., Gebert, J., Gröngröft, A., Pfeiffer, E. (2011). Assessment of the methane oxidation capacity of compacted soils intended for use as landfill cover materials. Waste Manage., 31, 833-842.
- [41] Pedersen G.B., Scheutz, C., & Kjeldsen, P. (2011). Availability and propert ies of materials for the Fakse Landfill biocover. Waste Manage., 31, 884-894.
- [42] Abichou T., Mahieu, K., Yuan, L., Chanton, J., & Hater, G. (2009). Effects of compost biocovers on gas flow and methane oxidation in a landfill cover. Waste Manage., 29, 1595-1601.
- [43] Park S., Lee, I., Cho, C., & Sung, K. (2008). Effects of earthworm cast and powdered activated carbonon methane removal capacity of landfill cover soils. Chemosphere, 70, 1117-1123.
- [44] Einola J.M., Karhu, A.E., & Rintala, J.A. (2008). Mechanically-biologically treated municipal solid waste as a support medium for microbial methane oxidation to mitigate landfill greenhouse emissions. Waste Manage., 28, 97-111.
- [45] Gebert J., Groengroeft, A., & Pfeiffer, E. (2011). Relevance of soil physical properties for the microbial oxidation of methane in landfill covers. Soil Biol. Biochem., 43, 1759-1767.
- [46] Semrau J.D., Chistoserdov, A., Lebron, J., Costello, A., Davagnino, J., Kenna, E., Holmes, A.J., Finch, R., Murrell, J.C., & Lidstrom, M.E. (1995). Particulate methane monooxygenase genes in methanotrophs. J. Bacteriol., 177, 3071-3079.
- [47] Bender M., & Conrad, R. (1993). Kinetics of methane oxidation in oxic soils. Chemosp here, 26, 687-696.
- [48] Pawłowska M., & Stępniewski W. (2004). The effect of Oxygen concentration on the activity of methanotrophs in sand material. Environ. Prot. Eng., 30, 81-91.
- [49] Schnell S., & King, G.M. (1995). Stability of Methane Oxidation Capacity to Variatio ns in Methane and Nutrient Concentrations. FEMS Microbiol. Ecol., 17, 285-294.
- [50] Reeburgh W.S. (1976). Methane consumption in Cariaco Trench waters and sediments. Earth. Planet. Sci. Lett., 28, 337-344.
- [51] Ussler III W., & Paull, C.K. (2008). Rates of an aerobic oxidation of methane and authigenic carbonate mineralization in methane-rich deep-sea sediments inferred from models and geochemical profiles. Earth. Planet. Sci. Lett., 266, 271-287.
- [52] Pozdnyakov L.A., Stepanov, A.L., Manucharova, N.A. (2011). Anaerobic Methane Oxidat ion in Soils and Water Ecosystems. Moscow University Soil Science Bulletin, 66, 24-31.
- [53] Grossman E., Cifuentes, L., & Cozzarelli, I. (2002). Anaerobic methane oxidation in a landfill-leachate plume. Environ. Sci. Technol., 36, 2436-2442.
- [54] He R., Ruan, A., Jiang, C., Shen, D. (2008). Responses of oxidation rate and microbial communities to methane in simulated landfill cover soil microcosms. Bioresour. Technol., 99, 7192-7199.
- [55] Jugnia L., Cabral, A.R., & Greer, C.W. (2008). Biotic methane oxidation within an instrumented experimental landfill cover. Ecol. Eng., 33, 102-109.
- [56] Einola J.M., Kettunen, R.H., & Rintala, J.A. (2007). Responses of methane oxidation to temperature and water content in cover soil of a boreal landfill. Soil Biol. Biochem., 39, 1156-1164.
- [57] Trotsenko Y.A., & Khmelenina, V.N. (2002). Extremophilic and extremotolerantmethanotrophic bacteria. Arch. Microbiol., 177, 123-131.
- [58] Pol A., Heijmans, K., Harhangi, H.R., Tedesco, D., Jetten, M.S., & den Camp, H.J.O. (2007). Methanotrophy below pH 1 by a new Verrucomicrobia species. Nature, 450.
- [59] Powlson D.S., Goulding, K.W.T., Willison, T.W., Webster, C.P., & Hütsch, B.W. (1997). The Effect of Agricultural on Methane Oxidation in Soil. Nutr. Cycl. Agroecosy., 49, 59-70.
- [60] Whalen S.C., & Reeburgh, W.S. (1996). Moisture and temperature sensitivity of CH4 oxidation in boreal soils. Soil Biol. Biochem., 28, 1271-1281.
- [61] Stralis-Pavese N., Bodrossy, L., Reichenauer, T.G., Weilharter, A., & Sessitsch, A. (2006). 16Sr RNA based T-RFLP analysis of methane oxidising bacteria-Assessment, critical evaluation of methodology performance and application for landfill site cover soils. Appl. Soil Ecol., 31, 251-266.
- [62] Bohn S., Brunke, P., Gebert, J., & Jager, J. (2011). Improving the aeration of critical fine-grained landfill top cover material by vegetation to increase the microbial methane oxidation efficiency. Waste Manage., 31, 854-863.
- [63] Bender M., & Conrad, R. (1992). Kinetics of CH4 oxidation in oxic soils exposed to ambient air or high CH4 mixing ratios, FEMS Microbiol. Lett., 101, 261-270.
- [64] Kightley D., Nedwell, D.B., & Cooper, M. (1995). Capacity for Methane Oxidation in LandfilI Cover Soils Measured in Laboratory-Scale Soil Microcosms. Appl. Environ. Microbiol., 61, 592-601.
- [65] Bogner J.E., Spokas, K.A., & Burton, E.A. (1997). Kinetics of methane oxidation in a landfill cover soil: temporal variations, a whole-landfill oxidation experiment, and modeling of net CH4 emissions. Environ. Sci. Technol., 31, 2504-2514.
- [66] Gebert J., Groengroeft, A., & Miehlich, G. (2003). Kinetics of microbial landfill methane oxidation in biofilters. Waste Manage., 23, 609-619.
- [67] Streese J., Stegmann, R. (2003). Microbial oxidation of methane from old landfills in biofilters. Wast eManage., 23, 573-580.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-06455803-80e9-40d8-bda4-5a2c416e91af