PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Characterization of multi-emitter tuneable led source for endoscopic applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we describe our own construction of a tuneable light source based on a set of light emitting diodes covering the visible spectrum using a homogenizing rod instead commonly used low energy-efficient integrating spheres. The expected prime application of the source is a medical endoscopic system, however it is possible to use it also for other purposes requiring both multispectral operation and a tuneable white light source. We describe the construction of the source and include precise characterization of the output white light - distribution of CCT, Duv, ∆u’v’ and colour rendering indexes (Ra, R9, Rf, Rg) of light in several planes located at various distances. The obtained results prove that our source is characterized by very good colour rendition according to the Ra and Rf method for various correlated colour temperatures (2700-6500) K. As an example of application images of the Macbeth colour chart registered with an RGB camera included in the laboratory measurement stand are presented. The obtained results prove that, after whole system calibration, this source can be used in many applications, where evaluation of objects requires precise analysis of their colour and multispectral procedures.
Słowa kluczowe
Rocznik
Strony
153--169
Opis fizyczny
Bibliogr. 47 poz., rys., tab., wykr.
Twórcy
  • Bialystok University of Technology, Faculty of Electrical Engineering, 15-351 Białystok, Wiejska 45D, Poland
  • Bialystok University of Technology, Faculty of Electrical Engineering, 15-351 Białystok, Wiejska 45D, Poland
  • Bialystok University of Technology, Faculty of Electrical Engineering, 15-351 Białystok, Wiejska 45D, Poland
Bibliografia
  • [1] Yeh, N., Ding, T.J., Yeh, P. (2015). Light-emitting diodes’ light qualities and their corresponding scientific applications. Renewable and Sustainable Energy Reviews, 51, 55-61.
  • [2] Clancy, N.T., Li, R., Rogers, K., Driscoll, P., Excel, P., Yandle, R., Elson, D.S. (2012). Development and evaluation of a light-emitting diode endoscopic light source. Proc. SPIE, 8214, 82140R.
  • [3] Swain, P., Iddan, G.J., Meron, G., Glukhovsky, A. (2001). Wireless capsule endoscopy of the small bowel: development, testing, and first human trials. Proc. SPIE, 4158, 19-24.
  • [4] Jeng, W.D., Mang, O.Y., Chen, Y.T., Wu, Y.Y. (2011). Design of illumination system in ring field capsule endoscope. Proc. SPIE, 7893, 78930E.
  • [5] Lee, A.C., Elson, D.S., Neil, M.A., Kumar, S., Ling, B.W., Bello, F., Hanna, G.B. (2009). Solid-state semiconductors are better alternatives to arc-lamps for efficient and uniform illumination in minimal access surgery. Surgical endoscopy, 23(3), 518-526.
  • [6] Lu, M.K., Chang, F.C., Wang, W.Z., Hsieh, C.C., Kao, F.J. (2014). Compact light-emitting diode lighting ring for video-assisted thoracic surgery. Journal of biomedical optics, 19(10), 105004.
  • [7] Khan, T.Q., Bodrogi, P., Vinh, Q.T., Winkler, H. (Eds.). (2015). LED lighting: Technology and pereption. John Wiley & Sons.
  • [8] Papamichael, K., Siminovitch, M., Veitch, J.A., Whitehead, L. (2016). High color rendering can enable better vision without requiring more power. Leukos, 12(1-2), 27-38.
  • [9] Bois, C., Bodrogi, P., Khanh, T. Q., Winkler, H. (2014). Measuring, simulating and optimizing current LED phosphor systems to enhance the visual quality of lighting. Journal of Solid State Lighting, 1(1),5.
  • [10] Brown, S.W., Rice, J.P., Neira, J.E., Johnson, B.C., Jackson, J.D. (2006). Spectrally tunable sources for advanced radiometric applications. Journal of research of the National Institute of Standards and Technology, 111(5), 401.
  • [11] Burgos-Fernandez, F.J., Vilaseca, M., Perales, E., Herrera-Ramirez, J.A., Martínez-Verdú, F.M., Pujol, J. (2016). Spectrally tunable light source based on light-emitting diodes for custom lighting solutions. Optica Applicata, 46(1), 117-129.
  • [12] Hu, N.C., Wu, C.C., Chen, S.F., Hsiao, H.C. (2008). Implementing dynamic daylight spectra with light-emitting diodes. Applied optics, 47(19), 3423-3432.
  • [13] Wu, C.C., Hu, N.C., Fong, Y.C., Hsiao, H.C., Hsiao, S.L. (2012). Optimal pruning for selecting LEDs to synthesize tunable illumination spectra. Lighting Research & Technology, 44(4), 484-497.
  • [14] Blaszczak, U.J., Gryko, L., Zajac, A. (2017). Tunable white light source for medical applications. Proc. SPIE, 10445, 104453Y.
  • [15] Afshari, S., Mishra, S., Julius, A., Lizarralde, F., Wason, J.D., Wen, J.T. (2014). Modeling and control of color tunable lighting systems. Energy and Buildings, 68, 242-253.
  • [16] LeGendre, C., Yu, X., Debevec, P. (2017). Optimal LED selection for multispectral lighting reproduction. Electronic Imaging, (8), 25-32.
  • [17] Parmar, M., Lansel, S., Farrell, J. (2012). An LED-based lighting system for acquiring multispectral scenes. Proc. SPIE, 8299, 82990P.
  • [18] Wu, T., Lin, Y., Zheng, L., Guo, Z., Xu, J., Liang, S., Chen, Z. (2018). Analyses of multi-color plant-growth light sources in achieving maximum photosynthesis efficiencies with enhanced color qualities. Optics express, 26(4), 4135-4147.
  • [19] Oh, J.H., Yang, S.J., Do, Y.R. (2014). Healthy, natural, efficient and tunable lighting: four-package white LEDs for optimizing the circadian effect, color quality and vision performance. Light: Science & Applications, 3(2), e141.
  • [20] Blaszczak, U.J., Aziz, D.A., Gryko, L. (2017). Influence of the spectral composition of LED lighting system on plants cultivation in a darkroom. Proc. SPIE, 10445, 104453V.
  • [21] Haff, R.P., Pearson, T.C., Maghirang, E. (2013). A multispectral sorting device for isolating single wheat kernels with high protein content. Journal of Food Measurement and Characterization, 7(4), 149-157.
  • [22] Fu, X., Wang, X., Rao, X. (2017). An LED-based spectrally tuneable light source for visible and near-infrared spectroscopy analysis: A case study for sugar content estimation of citrus. Biosystems Engineering, 163, 87-93.
  • [23] Lin, D., Zhong, P., He, G. (2017). Color temperature tunable white LED cluster with color rendering index above 98. IEEE Photonics Technology Letters, 29(12), 1050-1053.
  • [24] Molada Tebar, A., Lerma, J.L., Marqués Mateu, Á. (2018). Camera characterization for improving color archaeological documentation. Color Research & Application, 43(1), 47-57.
  • [25] ul Rehman, A., Anwer, A.G., Goldys, E.M. (2017). Programmable LED-based integrating sphere light source for wide-field fluorescence microscopy. Photodiagnosis and photodynamic therapy, 20, 201-206.
  • [26] Bartczak, P., Gebejes, A., Fält, P., Hauta-Kasari, M. (2016). An LED-based tunable illumination for diverse medical applications. Computer-Based Medical Systems (CBMS), 2016 IEEE 29th International Symposium, 292-293.
  • [27] Dubey, V., Singh, G., Singh, V., Ahmad, A., Mehta, D. S. (2016). Multispectral quantitative phase imaging of human red blood cells using inexpensive narrowband multicolor LEDs. Applied optics, 55(10), 2521-2525.
  • [28] Herrera-Ramírez, J., Vilaseca, M., Pujol, J. (2014). Portable multispectral imaging system based on light-emitting diodes for spectral recovery from 370 to 1630 nm. Applied optics, 53(14), 3131-3141.
  • [29] Rubins, U., Spigulis, J., Valeine, L., Berzina, A. (2013). Semi-automatic detection of skin malformations by analysis of spectral images. Proc. OSA, 8798, 87980.
  • [30] Delpueyo, X., Vilaseca, M., Royo, S., Ares, M., Rey-Barroso, L., Sanabria, F., Solomita, G. (2017). Multispectral imaging system based on light-emitting diodes for the detection of melanomas and basal cell carcinomas: a pilot study. Journal of biomedical optics, 22(6), 065006.
  • [31] Blaszczak, U., Gilewski, M., Gryko, L., Zajac, A., Kukwa, A., Kukwa, W. (May 2014). Applications of optical fibers and miniature photonic elements in medical diagnostics. Proc. SPIE, 9228, 92280J.
  • [32] American National Standard for Electric Lamps - Specifications for the Chromaticity of Solid State Lighting (SSL) Products ANSI, C78.377-2017.1
  • [33] Van Driel, W.D., Fan, X., Zhang, G.Q. (eds.). (2017). Solid State Lighting Reliability Part 2: Components to Systems, 3, Springer.
  • [34] Shen, J., Chang, S., Wang, H., Zheng, Z. (2017). Optimising the illumination spectrum for enhancing tissue visualisation. Lighting Research & Technology, 1477153517732812.
  • [35] Wang, H.C., Chen, Y.T. (2012). Optimal lighting of RGB LEDs for oral cavity detection. Optics express, 20(9), 10186-10199.
  • [36] Lee, M.H., Seo, D.K., Seo, B.K., Park, J.I. (2009). Optimal illumination for discriminating objects with different spectra. Optics letters, 34(17), 2664-2666.
  • [37] Shen, J., Chang, S., Wang, H., Zheng, Z. (2016). Optimal illumination for visual enhancement based on color entropy evaluation. Optics express, 24(17), 19788-19800.
  • [38] CIE224:2017. Colour Fidelity Index For Accurate Scientific Use.
  • [39] Standard PN-EN 60601-2-41: 2010 / A1: 2015-09E - Medical electrical equipment - Part 2-41: Particular requirements for the basic safety and essential performance of surgical luminaires and luminaires for diagnosis, (2015).
  • [40] Gryko, L., Zajac, A., Szymanska, J., Blaszczak, U., Palkowska, A., Kulesza, E. (2016). Semiconductor lasers vs LEDs in diagnostic and therapeutic medicine. Proc. SPIE, 10159, 101590I.
  • [41] Gryko, L., Blaszczak, U., Zajac, A., Palkowska, A. (2016). Evaluation of possibility of correlated color temperature modelling for high power LEDs set. Przeglad Elektrotechniczny, 92(9), 157-162.
  • [42] Błaszczak, U., Gilewski, M., Gryko, Ł., Zając, A. (2016). Investigation of the supply influence to chosen optical parameters of the LEDs set. Przegląd Elektrotechniczny, 92(9), 150-153.
  • [43] Gilewski, M., Gryko, L., Zajac, A. (2013). Digital controlling system to the set of high power LEDs. Proc. SPIE, 8902, 89021D.
  • [44] Gilewski, M. (2010). Multi-channel, DC current supply system for set of high power LED. Przeglad Elektrotechniczny, 86(10), 193-196.
  • [45] Gryko, L., Blaszczak, U.J., Zajac, A.S. (2018). Colorimetric characterization of the tunable LED-based light source at the output of the homogenizing rod. Proc. SPIE, 10808, 1080811.
  • [46] Blaszczak, U.J., Gryko, L., Palkowska, A., Kulesza, E., Zajac, A. (2016). Color mixing in LED illuminating system for endoscopic purposes. IEEE, 1-6.
  • [47] Product CCD & CMOS Cameras. http://www.thorlabs.com (Jun. 2018).
Uwagi
EN
1. This paper was prepared on the basis of the results of the research framework S/WE/3/2018 obtained in the Department of Electric Power Engineering, Photonics and Lighting Technology, Bialystok University of Technology.
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0642c555-9ad5-482a-b59f-11098019febe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.