Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We propose a class of weighted least-squares estimators for the tail index of a regularly varying upper tail of a distribution. Universal asymptotic normality of the estimators is established over the whole model. Asymptotic mean square errors of these and earlier estimators are compared within a submodel of regular variation, more general than Hall's model. We also discuss the choice of the optimal weights and the choice of the number of extreme order statistics to be used.
Czasopismo
Rocznik
Tom
Strony
249--265
Opis fizyczny
Bibliogr. 18 poz., wykr.
Twórcy
autor
- Bolyai Institute, University of Szeged, Aradi vértanúk tere 1, 6720 Szeged, Hungary
Bibliografia
- [1] J. Beirlant and J. L. Teugels, Asymptotic normality of Hill's estimator, in: Extreme Value Theory, Oberwolfach, 1987. Lecture Notes in Statist. 51 (1989), pp. 148-155.
- [2] J. Beirlant, P. Vynckier and J. L. Teugels, Tail index estimation, Pareto quantile plots, and regression diagnostics, J. Amer. Statist. Assoc. 91 (1996), pp. 1659-1667.
- [3] N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular Variation, Cambridge University Press, Cambridge 1987.
- [4] M. Csörgő, S. Csörgő, L. Horváth and D. M. Mason, Weighted empirical and quantile processes, Ann. Probab. 14 (1986), pp. 31-85.
- [5] S. Csörgő, P. Deheuvels and D. M. Mason, Kernel estimates of the tail index of a distribution, Ann. Statist. 13 (1985), pp. 1050-1077.
- [6] S. Csörgő, E. Haeusler and D. M. Mason, A probabilistic approach to the asymptotic distribution of sums of independent, identically distributed random variables, Adv. in Appl. Math. 9 (1988), pp. 259-333.
- [7] S. Csörgő and D. M. Mason, Central limit theorems for sums of extreme values, Math. Proc. Cambridge Philos. Soc. 98 (1985), pp. 547-558.
- [8] S. Csörgő and L. Viharos, On the asymptotic normality of Hill's estimator, ibidem 118 (1995), pp. 375-382.
- [9] S. Csörgő and L. Viharos, Asymptotic normality of least-squares estimators of tail indices, Bernoulli 3 (1997), pp. 351-370.
- [10] S. Csörgő and L. Viharos, Estimating the tail index, in: Asymptotic Methods in Probability and Statistics, B. Szyszkowicz (Ed.), North-Holland, Amsterdam 1998, pp. 833-881.
- [11] A. L. M. Dekkers and L. de Haan, Optimal choice of sample fraction in extreme-value estimation, J. Multivariate Anal. 47 (1993), pp. 173-195.
- [12] E. Haeusler and J. L. Teugels, On the asymptotic normality of Hill's estimator for the exponent of regular variation, Ann. Statist. 13 (1985) pp. 743-756.
- [13] P. Hall, On some simple estimates of an exponent of regular variation, J. Roy. Statist. Soc. Ser. B 44 (1982), pp. 37-42.
- [14] P. Hall and A. H. Welsh, Adaptive estimates of parameters of regular variation, Ann. Statist. 13 (1985), pp. 331-341.
- [15] B. M. Hill, A simple general approach to inference about the tail of a distribution, ibidem 3 (1975), pp. 1163-1174.
- [16] M. Kratz and S. Resnick, The qq-estimator of the index of regular variation, Comm. Statist. Stochastic Models 12 (1996), pp. 699-724.
- [17] J. Schultze and J. Steinebach, On least squares estimates of an exponential tail coefficient, Statist. Decisions 14 (1996), pp. 353-372.
- [18] L. Viharos, Asymptotic distributions of linear combinations of extreme values, Acta Sci, Math. (Szeged) 58 (1993), pp. 211-231.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0641fbe7-66dc-4aec-9869-88be7c2d6e2f