PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Using an LSTM network to monitor industrial reactors using electrical capacitance and impedance tomography - a hybrid approach

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents a new concept for monitoring industrial tank reactors. The presented concept allows for faster and more reliable monitoring of industrial processes, which increases their reliability and reduces operating costs. The innovative method is based on electrical tomography. At the same time, it is non-invasive and enables the imaging of phase changes inside tanks filled with liquid. In particular, the hybrid tomograph can detect gas bubbles and crystals formed during industrial processes. The main novelty of the described solution is the simultaneous use of two types of electrical tomography: impedance and capacitance. Another novelty is the use of the LSTM network to solve the tomographic inverse problem. It was made possible by taking the measurement vector as a data sequence. Research has shown that the proposed hybrid solution and the LSTM algorithm work better than separate systems based on impedance or capacitance tomography.
Rocznik
Strony
art. no. 11
Opis fizyczny
Bibliogr. 49 poz., rys., tab., wykr.
Twórcy
  • Lublin University of Technology, Department of Organization of Enterprise, ul. Nadbystrzycka 38D, 20-618 Lublin, Poland
  • WSEI University, ul. Projektowa 4, 20-209 Lublin, Poland
  • Research and Development Center, Netrix S.A.
  • WSEI University, ul. Projektowa 4, 20-209 Lublin, Poland
  • Research and Development Center, Netrix S.A.
  • Lublin University of Technology, Department of Organization of Enterprise, ul. Nadbystrzycka 38D, 20-618 Lublin, Poland
  • Lublin University of Technology, Department of Organization of Enterprise, ul. Nadbystrzycka 38D, 20-618 Lublin, Poland
  • University of Bath, Department of Electronic & Electrical Engineering, Claverton Down, Bath, BA2 7AY, United Kingdom
Bibliografia
  • 1. Admasu A, Bogale W, Mekonnen Y S. Experimental and simulation analysis of biogas production from beverage wastewater sludge for electricity generation. Scientific Reports 2022 12:1 2022; 12(1): 1–15, https://doi.org/10.1038/s41598-022-12811-3.
  • 2. Aguirre-Ezkauriatza E J, Galarza-González M G, Uribe-Bujanda A I et al. Effect of Mixing During Fermentation in Yogurt Manufacturing. Journal of Dairy Science 2008; 91(12): 4454–4465, https://doi.org/10.3168/JDS.2008-1140.
  • 3. Babout L, Grudzień K, Wiącek J et al. Selection of material for X-ray tomography analysis and DEM simulations: comparison between granular materials of biological and non-biological origins. Granular Matter 2018. doi:10.1007/s10035-018-0809-y, https://doi.org/10.1007/s10035-018-0809-y.
  • 4. Banerjee S, Prasad N, Selvaraju S. Reactor Design for Biogas Production-A Short Review. Journal of Energy and Power Technology 2022, Vol. 4, 004 2022; 4(1): 1–22, https://doi.org/10.21926/JEPT.2201004.
  • 5. Beale M H, Hagan M T, Demuth H B. Deep Learning Toolbox User’s Guide. Herborn, The Mathworks Inc.: 2018.
  • 6. Cabaret F, Bonnot S, Fradette L, Tanguy P A. Mixing Time Analysis Using Colorimetric Methods and Image Processing. Industrial and Engineering Chemistry Research 2007; 46(14): 5032–5042, https://doi.org/10.1021/IE0613265.
  • 7. Chakraborty K, Choudhury M G, Das S, Paul S. Development of PLC-SCADA based control strategy for water storage in a tank for a semi-automated plant. Journal of Instrumentation 2020; 15(04): T04007, https://doi.org/10.1088/1748-0221/15/04/T04007.
  • 8. Deabes W A, Abdelrahman M A. Solution of the forward problem of Electric Capacitance Tomography of conductive materials. WMSCI 2009 - The 13th World Multi-Conference on Systemics, Cybernetics and Informatics, Jointly with the 15th International Conference on Information Systems Analysis and Synthesis, ISAS 2009 - Proc., 2009.
  • 9. Dębowski M, Zieliński M. Wastewater Treatment and Biogas Production: Innovative Technologies, Research and Development Directions. Energies 2022, Vol. 15, Page 2122 2022; 15(6): 2122, https://doi.org/10.3390/EN15062122.
  • 10. Duraj A, Korzeniewska E, Krawczyk A. Classification algorithms to identify changes in resistance. Przeglad Elektrotechniczny 2015. doi:10.15199/48.2015.12.19, https://doi.org/10.15199/48.2015.12.19.
  • 11. Dusek J, Mikulka J. Measurement-based domain parameter optimization in electrical impedance tomography imaging. Sensors 2021. doi:10.3390/s21072507, https://doi.org/10.3390/s21072507.
  • 12. Dutz F J, Heinrich A, Bank R et al. Fiber-Optic Multipoint Sensor System with Low Drift for the Long-Term Monitoring of High-Temperature Distributions in Chemical Reactors. Sensors 2019, Vol. 19, Page 5476 2019; 19(24): 5476, https://doi.org/10.3390/S19245476.
  • 13. Faragallah O S, El-Hoseny H, El-Shafai W et al. A comprehensive survey analysis for present solutions of medical image fusion and future directions. IEEE Access 2021; 9: 11358–11371, https://doi.org/10.1109/ACCESS.2020.3048315.
  • 14. Fiderek P, Kucharski J, Wajman R. Fuzzy Regulator for Two‐Phase Gas–Liquid Pipe Flows Control. Applied Sciences (Switzerland) 2022. doi:10.3390/APP12010399, https://doi.org/10.3390/APP12010399.
  • 15. Fu W, Sheng Y, Xiong D. Optimal reconstruction design for JPEG-coded image using structural similarity index. Proceedings of the 2017 12th IEEE Conference on Industrial Electronics and Applications, ICIEA 2017 2018; 2018-February: 180–184, https://doi.org/10.1109/ICIEA.2017.8282837.
  • 16. Gholami Z, Gholami F, Tišler Z, Vakili M. A Review on the Production of Light Olefins Using Steam Cracking of Hydrocarbons. Energies 2021, Vol. 14, Page 8190 2021; 14(23): 8190, https://doi.org/10.3390/EN14238190.
  • 17. Glorot X, Yoshua B. Understanding the difficulty of training deep feedfor-ward neural networks. Proceedings of the thirteenth international confer-ence on artificial intelligence and statistics, 2010: 249–256.
  • 18. Habets L H A, PAQUESWATERSYSTEMSB. V, Boerstraat T D. INTRODUCTION OF THE IC REACTOR IN THE PAPER INDUSTRY. 2001.
  • 19. Koulountzios P, Rymarczyk T, Soleimani M. A quantitative ultrasonic travel-time tomography to investigate liquid elaborations in industrial processes. Sensors (Switzerland) 2019. doi:10.3390/s19235117, https://doi.org/10.3390/s19235117.
  • 20. Lee K C, Yianneskis M. A Liquid Crystal Thermographic Technique for the Measurement of Mixing Characteristics in Stirred Vessels. Chemical Engineering Research and Design 1997; 75(8): 746–754, https://doi.org/10.1205/026387697524416.
  • 21. Liang G, Dong F, Kolehmainen V et al. Nonstationary Image Reconstruction in Ultrasonic Transmission Tomography Using Kalman Filter and Dimension Reduction. IEEE Transactions on Instrumentation and Measurement 2021. doi:10.1109/TIM.2020.3031172, https://doi.org/10.1109/TIM.2020.3031172.
  • 22. Liu S, Huang Y, Wu H et al. Efficient Multitask Structure-Aware Sparse Bayesian Learning for Frequency-Difference Electrical Impedance Tomography. IEEE Transactions on Industrial Informatics 2021; 17(1): 463–472, https://doi.org/10.1109/TII.2020.2965202.
  • 23. Moleda M, Momot A, Mrozek D. Regression methods for detecting anomalies in flue gas desulphurization installations in coal-fired power plants based on sensor data. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 2020; 12141 LNCS: 316–329, https://doi.org/10.1007/978-3-030-50426-7_24/TABLES/3.
  • 24. Mosorov V, Rybak G, Sankowski D. Plug Regime Flow Velocity Measurement Problem Based on Correlability Notion and Twin Plane Electrical Capacitance Tomography: Use Case. Sensors 2021, Vol. 21, Page 2189 2021; 21(6): 2189, https://doi.org/10.3390/S21062189.
  • 25. Nguyen V T, Bui H. Development of Conductivity Probe and Signal Processing Algorithm for Measuring of Local Two-Phase Flow Parameters. VINANST-13: 13. Vietnam Conference on Nuclear Science and Technology; Hoi nghi Khoa hoc va Cong nghe Hat nhan Toan quoc lan thu 13 (1) 2019: 51079304.
  • 26. Öner M, Bach C, Tajsoleiman T et al. Scale-up Modeling of a Pharmaceutical Crystallization Process via Compartmentalization Approach. Computer Aided Chemical Engineering 2018; 44: 181–186, https://doi.org/10.1016/B978-0-444-64241-7.50025-2.
  • 27. Rao G, Aghajanian S, Koiranen T et al. Process monitoring of antisolvent based crystallization in low conductivity solutions using electrical impedance spectroscopy and 2-D electrical resistance tomography. Applied Sciences (Switzerland) 2020. doi:10.3390/app10113903, https://doi.org/10.3390/app10113903.
  • 28. Rashad O, Attallah O, Morsi I. A smart PLC-SCADA framework for monitoring petroleum products terminals in industry 4.0 via machine learning. Measurement and Control (United Kingdom) 2022; 55(8): 830–848, https://doi.org/10.1177/00202940221103305/ASSET/IMAGES/LARGE/10.1177_00202940221103305-FIG2.JPEG.
  • 29. Ricard F, Brechtelsbauer C, Xu X Y, Lawrence C J. Monitoring of multiphase pharmaceutical processes using electrical resistance tomography. Chemical Engineering Research and Design 2005. doi:10.1205/cherd.04324, https://doi.org/10.1205/cherd.04324.
  • 30. Romanowski A, Łuczak P, Grudzień K. X-ray imaging analysis of silo flow parameters based on trace particles using targeted crowdsourcing. Sensors (Switzerland) 2019. doi:10.3390/s19153317, https://doi.org/10.3390/s19153317.
  • 31. Rybak G, Strzecha K, Krakós M. A New Digital Platform for Collecting Measurement Data from the Novel Imaging Sensors in Urology. Sensors 2022. doi:10.3390/S22041539, https://doi.org/10.3390/S22041539.
  • 32. Rymarczyk T, Kłosowski G, Hoła A et al. Comparison of Machine Learning Methods in Electrical Tomography for Detecting Moisture in Building Walls. Energies 2021; 14(10): 2777, https://doi.org/10.3390/en14102777.
  • 33. Rymarczyk T, Kłosowski G, Hoła A et al. Optimising the use of Machine learning algorithms in electrical tomography of building Walls: Pixel oriented ensemble approach. Measurement 2022; 188: 110581, https://doi.org/10.1016/J.MEASUREMENT.2021.110581.
  • 34. Rymarczyk T, Kozłowski E, Kłosowski G. Electrical impedance tomography in 3D flood embankments testing – elastic net approach. Transactions of the Institute of Measurement and Control 2019; 42(4): 680–690, https://doi.org/10.1177/0142331219857374.
  • 35. Rząsa M R. Measurement of parameters of the moving gas bubbles with the image tomograph. 11th IMEKO TC14 Symposium on Laser Metrology for Precision Measurement and Inspection in Industry, LMPMI 2014 2014: 247–252.
  • 36. Rząsa M R. Selection of optical tomography parameters for gas bubble shape analysis. Chemical and Process Engineering - Inzynieria Chemiczna i Procesowa 2014; 35(1): 19–33, https://doi.org/10.2478/CPE-2014-0002.
  • 37. Sankowski D, Plaskowski A, Mosorov V et al. Image segmentation algorithms for industrial process tomography. 2nd World Congress on Industrial Process Tomography 2013: 736–741.
  • 38. Sardeshpande M v., Kumar G, Aditya T, Ranade V v. Mixing studies in unbaffled stirred tank reactor using electrical resistance tomography. Flow Measurement and Instrumentation 2016. doi:10.1016/j.flowmeasinst.2016.01.003, https://doi.org/10.1016/j.flowmeasinst.2016.01.003.
  • 39. Silva D P, Brányik T, Dragone G et al. High gravity batch and continuous processes for beer production: Evaluation of fermentation performance and beer quality. Chemical Papers 2008; 62(1): 34–41, https://doi.org/10.2478/S11696-007-0076-6.
  • 40. Štampar S, Sokolič S Š, Karer G et al. Theoretical and fuzzy modelling of a pharmaceutical batch reactor. Mathematical and Computer Modelling 2011; 53(5–6): 637–645, https://doi.org/10.1016/J.MCM.2010.09.016.
  • 41. Szczęsny A, Korzeniewska E. Selection of the method for the earthing resistance measurement. Przeglad Elektrotechniczny 2018. doi:10.15199/48.2018.12.39, https://doi.org/10.15199/48.2018.12.39.
  • 42. Verma D, Agarwal S. Cardiac Arrhythmia Detection from Single-lead ECG using CNN and LSTM assisted by Oversampling. 2018 International Conference on Advances in Computing, Communications and Informatics, ICACCI 2018, Institute of Electrical and Electronics Engineers Inc.: 2018: 14–17, https://doi.org/10.1109/ICACCI.2018.8554541.
  • 43. Wajman R. The concept of 3D ECT system with increased border area sensitivity for crystallization processes diagnosis. Sensor Review 2021; 41(1): 35–45, https://doi.org/10.1108/SR-10-2019-0254.
  • 44. Wanta D, Makowiecka O, Smolik W T et al. Numerical Evaluation of Complex Capacitance Measurement Using Pulse Excitation in Electrical Capacitance Tomography. Electronics (Switzerland) 2022. doi:10.3390/ELECTRONICS11121864, https://doi.org/10.3390/ELECTRONICS11121864.
  • 45. Wanta D, Smolik W T, Kryszyn J et al. Image reconstruction using Z-axis spatio-temporal sampling in 3D electrical capacitance tomography. Measurement Science and Technology 2022. doi:10.1088/1361-6501/AC8220, https://doi.org/10.1088/1361-6501/AC8220.
  • 46. Yan P, Jin H, Tao F F et al. Flow characterization of gas-liquid with different liquid properties in a Y-type microchannel using electrical resistance tomography and volume of fluid model. Journal of the Taiwan Institute of Chemical Engineers 2022; 136: 104390, https://doi.org/10.1016/J.JTICE.2022.104390.
  • 47. Ye Z, Banasiak R, Soleimani M. Planar array 3D electrical capacitance tomography. Insight: Non-Destructive Testing and Condition Monitoring 2013; 55(12): 675–680, https://doi.org/10.1784/INSI.2012.55.12.675.
  • 48. Ziolkowski M, Gratkowski S, Zywica A R. Analytical and numerical models of the magnetoacoustic tomography with magnetic induction. COMPEL-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering 2018. doi:10.1108/COMPEL-12-2016-0530, https://doi.org/10.1108/COMPEL-12-2016-0530.
  • 49. Zywica A R, Ziolkowski M, Gratkowski S. Detailed analytical approach to solve the magnetoacoustic tomography with magnetic induction (MAT-MI) problem for three-layer objects. Energies 2020. doi:10.3390/en13246515, https://doi.org/10.3390/en13246515.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-06405107-4a76-48ee-95de-c36ef9b8143f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.