PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Variable thickness approach for finding minimum laminate thickness and investigating effect of different design variables on its performance

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The performance of majority engineering systems made of composite laminates can be improved by increasing strength to weight ratio. Variable thickness approach (VTA), in discrete form, used in this study is capable of finding minimum laminate thickness in one stage only, instead of two stage methodology defined by other researchers, with substantial accuracy for the given load conditions. This minimum required laminate thickness can be used by designers in multiple ways. Current study reveals that effectiveness of VTA in this regard depends on ply thickness increment value and number of plies. Maximum Stress theory, Tsai Wu theory and Tsai Hill theory are used as constraints, while ply angles, ply thicknesses and number of plies in discrete form are used as design variables in current simulation studies. Optimization is carried out using direct value coded genetic algorithm. The effect of design variables such as ply angles, ply thicknesses and number of plies in discrete form on optimum solution is investigated considering Uniform Thickness Approach (UTA) and Variable Thickness Approach (VTA) for various load cases.
Rocznik
Strony
527--551
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
  • Mechanical Engineering Department, College of Engineering, Pune, Maharashtra, India – 411005
  • Mechanical Engineering Department, College of Engineering, Pune, Maharashtra, India – 411005
Bibliografia
  • [1] F.S. Almeida and A.M. Awruch. Design optimization of composite laminated structures using genetic algorithms and finite element analysis. Composite Structures, 88(3):443–454, 2009. doi: 10.1016/j.compstruct.2008.05.004.
  • [2] V.K. Tripathi and N.S. Kulkarni. OptiComp: a comprehensive procedure for optimal design of a composite laminate. International Journal of Engineering Sciences, 8(2):110–120, 2014.
  • [3] J.L. Pelletier and S.S. Vel. Multi-objective optimization of fiber reinforced composite laminates for strength, stiffness and minimal mass. Computers & Structures, 84(29-30):2065–2080, 2006. doi: 10.1016/j.compstruc.2006.06.001.
  • [4] R.H. Lopez, M.A. Luersen, and E.S. Cursi. Optimization of laminated composites considering different failure criteria. Composites Part B: Engineering, 40(8):731–740, 2009. doi: 10.1016/j.compositesb.2009.05.007.
  • [5] M. Akbulut and F.O. Sonmez. Optimum design of composite laminates for minimum thickness. Computers & Structures, 86(21–22):1974–1982, 2008. doi: 10.1016/j.compstruc.2008.05.003.
  • [6] G.N. Naik, S. Gopalakrishnan, and R. Ganguli. Design optimization of composites using genetic algorithms and failure mechanism based failure criterion. Composite Structures, 83(4):354–367, 2008. doi: 10.1016/j.compstruct.2007.05.005.
  • [7] S.N. Omkar, D. Mudigere, G.N. Naik, and S. Gopalakrishnan. Vector evaluated particle swarm optimization (VEPSO) for multi-objective design optimization of composite structures. Computers & Structures, 86(1–2):1–14 , 2008. doi: 10.1016/j.compstruc.2007.06.004.
  • [8] M.M.S. Fakhrabadi, A. Rastgoo, and M. Samadzadeh. Multi-objective design optimization of composite laminates using discrete shuffled frog leaping algorithm. Journal of Mechanical Science and Technology, 27(6):1791–1800, 2013. doi: 10.1007/s12206-013-0430-2.
  • [9] P.Y. Tabakov and S. Moyo. A comparative analysis of evolutionary algorithms in the design of laminated composite structures. Science and Engineering of Composite Materials, 24(1):13–21, 2017. doi: 10.1515/secm-2014-0385.
  • [10] H.T. Fan, H.Wang, and X.H. Chen. Optimization of multi-sandwich-panel composite structures for minimum weight with strength and buckling considerations. Science and Engineering of Composite Materials, 25(2):229–241, 2016. doi: 10.1515/secm-2015-0171.
  • [11] O. Seresta, Z. Gürdal, D.B. Adams, and L.T. Watson. Optimal design of composite wing structures with blended laminates. Composites Part B: Engineering, 38(4):469–480, 2007. doi: 10.1016/j.compositesb.2006.08.005.
  • [12] P. Badalló, D. Trias, L. Marin, and J.A. Mayugo. A comparative study of genetic algorithms for the multi-objective optimization of composite stringers under compression loads. Composites Part B: Engineering, , 47:130–136, 2013. doi: 10.1016/j.compositesb.2012.10.037.
  • [13] M. Walker and R.E. Smith. A technique for the multiobjective optimisation of laminated composite structures using genetic algorithms and finite element analysis. Composite Structures, 62(1):123–128, 2003. doi: 10.1016/S0263-8223(03)00098-9.
  • [14] B. Farshi and S. Herasati. Optimum weight design of fiber composite plates in flexure based on a two level strategy. Composite Structures, 73(4):495–504, 2006. doi: 10.1016/j.compstruct.2005.03.002.
  • [15] F.X. Irisarri, D.H. Bassir, N. Carrere, and J.F. Maire. Multiobjective stacking sequence optimization for laminated composite structures. Composites Science and Technology, 69(7-8):983–990, 2009. doi: 10.1016/j.compscitech.2009.01.011.
  • [16] P. Khosravi and R. Sedaghati. Design of laminated composite structures for optimum fiber direction and layer thickness, using optimality criteria. Structural and Multidisciplinary Optimization, 36(2):159–167, 2008. doi: 10.1007/s00158-007-0207-2.
  • [17] E.S. Barroso, E. Parente Jr., and A.M.C. de Melo. A hybrid PSO-GA algorithm for optimization of laminated composites. Structural and Multidisciplinary Optimization, 55(6):2111–2130, 2017. doi: 10.1007/s00158-016-1631-y.
  • [18] A. Gillet, P. Francescato, and P. Saffre. Single-and multi-objective optimization of composite structures: the influence of design variables. Journal of Composite Materials, 44(4):457–480, 2010. doi: 10.1177/0021998309344931.
  • [19] S. Adali, A. Richter, and V.E. Verijenko. Minimum weight design of symmetric angleply laminates under multiple uncertain loads. Structural Optimization, 9(2):89–95, 1995. doi: 10.1007/BF01758825.
  • [20] A.E. Assie, A.M. Kabeel, and F.F. Mahmoud. Effect of loading and lamination parameters on the optimum design of laminated plates. Journal of Mechanical Science and Technology, 25:1149–1158, 2011. doi: 10.1007/s12206-011-0336-9.
  • [21] R.H. Lopez, D. Lemosse, J.E.S. de Cursi, J. Rojas, and A. El-Hami. An approach for the reliability based design optimization of laminated composites. Engineering Optimization, 43(10):1079–1094, 2011. doi: 10.1080/0305215X.2010.535818.
  • [22] T. Vo-Duy, D. Duong-Gia, V. Ho-Huu, H.C.Vu-Do, and T. Nguyen-Thoi. Multi-objective optimization of laminated composite beam structures using NSGA–II algorithm. Composite Structures, 168:498–509, 2017. doi: 10.1016/j.compstruct.2017.02.038.
  • [23] F.O. Sonmez. Optimum design of composite structures: A literature survey (1969–2009). Journal of Reinforced Plastics and Composites, 36(1):3–39, 2017. doi: 10.1177/0731684416668262.
  • [24] H. Ghiasi, D. Pasini, and L. Lessard. Optimum stacking sequence design of composite materials Part I: Constant stiffness design. Composite Structures, 90(1):1–11, 2009. doi: 10.1016/j.compstruct.2009.01.006.
  • [25] M.J. Hinton, A.S. Kaddour, and P.D. Soden. A comparison of the predictive capabilities of current failure theories for composite laminates, judged against experimental evidence. Composites Science and Technology, 62(12-13):1725–1797, 2002. doi: 10.1016/S0266-3538(02)00125-2.
  • [26] P.D. Soden, A.S. Kaddour, and M.J. Hinton. Recommendations for designers and researchers resulting from the world-wide failure exercise. Composites Science and Technology, 64(3-4):589–604, 2004. doi: 10.1016/S0266-3538(03)00228-8.
  • [27] P.E. Nicholas, K.P. Padmanaban, and A.S. Sofia. Optimization of dispersed laminated composite plate for maximum safety factor using Genetic Algorithm and various failure criteria. Procedia Engineering, 38:1209–1217, 2012. doi: 10.1016/j.proeng.2012.06.152.
  • [28] T.A. Sebaey, C.S. Lopes, N. Blanco, and J. Costa. Ant colony optimization for dispersed laminated composite panels under biaxial loading. Composite Structures, 94(1):31–36, 2011. doi: 10.1016/j.compstruct.2011.07.021.
  • [29] P.K. Mallick. Fiber-Reinforced Composites: Materials, Manufacturing, and Design. 3rd edition, CRC Press, 2007.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-063f1bb8-28bd-487e-b952-57be178f13ab
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.