PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Calculation of Stress Intensity Factor for an Internal Circumferential Crack in a Rotating Functionally Graded Thick-Walled Hollow Circular Cylinder under Thermal Shock

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this article, the fracture behavior of functionally graded thick-walled cylinder under thermo-mechanical shock is investigated. For this purpose, classical coupled thermoelastic equations are used in calculations. First, these equations are discretized with extended finite element method (XFEM) in the space domain and then they are solved by the Newmark method in the time domain. The most general form of interaction integral is extracted for axially symmetric circumferential crack in a cylinder under thermal and mechanical loads in functionally graded materials and is used to calculate dynamic stress intensity factors (SIFs). The problem solution has been implemented in MATLAB software.
Rocznik
Strony
455--479
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • Shahrood University of Technology, Shahrood, Iran
autor
  • Shahrood University of Technology, Shahrood, Iran
Bibliografia
  • [1] B. Takabi. Thermomechanical transient analysis of a thick-hollow FGM cylinder. Engineering Solid Mechanics, 4(1):25–32, 2016. doi: 10.5267/j.esm.2015.10.002.
  • [2] M. Shariati, M.M. Rokhi, and H. Rayegan. Investigation of stress intensity factor for internal cracks in FG cylinders under static and dynamic loading. Frattura ed Integrità Strutturale, (39):166–180, 2017. doi: 10.3221/IGF-ESIS.39.17.
  • [3] T. Meshii and K. Watanabe. Closed form stress intensity factor of an arbitrarily located inner-surface circumferential crack in an edge-restraint cylinder under linear radial temperature distribution. Engineering Fracture Mechanics, 60(5):519–527, 1998. doi: 10.1016/S0013-7944(98)00046-0.
  • [4] R. Seifi. Stress intensity factors for internal surface cracks in autofrettaged functionally graded thick cylinders using weight function method. Theoretical and Applied Fracture Mechanics, 75:113–123, 2015. doi: 10.1016/j.tafmec.2014.11.004.
  • [5] I. Eshraghi and N. Soltani. Stress intensity factor calculation for internal circumferential cracks in functionally graded cylinders using the weight function approach. Engineering Fracture Mechanics, 134:1–19, 2015. doi: 10.1016/j.engfracmech.2014.12.007.
  • [6] I.V.Varfolomeyev, M. Petersilge, and M. Busch. Stress intensity factors for internal circumferential cracks in thin-and thick-walled cylinders. Engineering Fracture Mechanics, 60(5):491–500, 1998. doi: 10.1016/S0013-7944(98)00045-9.
  • [7] Y.Z. Chen. Stress intensity factors in a finite length cylinder with a circumferential crack. International Journal of Pressure Vessels and Piping, 77(8):439–444, 2000. doi: 10.1016/S0308-0161(00)00047-8.
  • [8] I.S. Jones. Impulse response model of thermal striping for hollow cylindrical geometries. Theoretical and Applied Fracture Mechanics, 43(1):77–88, 2005. doi: 10.1016/j.tafmec.2004.12.004.
  • [9] A. Birinci, T.S. Ozsahin, and R. Erdol. Axisymmetric circumferential internal crack problem of a thick-walled cylinder with inner and outer claddings. European Journal of Mechanics-A/Solids, 25(5):764–777, 2006. doi: 10.1016/j.euromechsol.2005.11.007.
  • [10] H. Grebner and U. Strathmeier. Investigation of different isoparametric axisymmetric crack tip elements applied to a complete circumferential surface crack in a pipe. Computers & Structures, 21(6):1177–1180, 1985. doi: 10.1016/0045-7949(85)90172-5.
  • [11] V.-X. Tran and S. Geniaut. Development and industrial applications of X-FEM axisymmetric model for fracture mechanics. Engineering Fracture Mechanics, 82:135–157, 2012. doi: 10.1016/j.engfracmech.2011.12.002.
  • [12] T. Lewis and X. Wang. The T-stress solutions for through-wall circumferential cracks in cylinders subjected to general loading conditions. Engineering Fracture Mechanics, 75(10):3206–3225, 2008. doi: 10.1016/j.engfracmech.2007.12.001.
  • [13] R. Ghajar and S.M. Nabavi. Closed-form thermal stress intensity factors for an internal circumferential crack in a thick-walled cylinder. Fatigue & Fracture of Engineering Materials & Structures, 33(8):504–512, 2010. doi: 10.1111/j.1460-2695.2010.01459.x.
  • [14] S. Navabi and M. Kamyab. Determination of transient thermal stress intensity factors in cylinders with circumferential crack. In 20th Annual International Conference on Mechanical Engineering, Shiraz, Iran, 2012.
  • [15] M. Shariati, H. Rayegan, and M.M. Rokhi. Calculation of stress intensity factors for FGM cylinder with central circular crack under static and dynamic loading. In 14th Conference of Iranian Aerospace Society, Tehran, Iran, 2015.
  • [16] M. Tehrani and T. Talebian. Analysis of FGM cylindrical vessels under thermo-mechanical loading. In Annual Conference on Mechanical Engineering, Tehran, Iran, 2008.
  • [17] R.B. Hetnarski and M.R. Eslami. Thermal stresses: advanced theory and applications. Springer, 2009. doi: 10.1007/978-1-4020-9247-3.
  • [18] W.M. Lai, D. Rubin, and E. Krempl. Introduction to continuum mechanics. Butterworth-Heinemann, 4th edition, 2009.
  • [19] M.M. Rokhi. Numerical analysis of crack propagation in a functionally graded layer under dynamic loading and thermal shock. Phd thesis, Faculty of Mechanics, Shahrood University of Technology, Iran, 2012.
  • [20] M.M. Rokhi and M. Shariati. Coupled thermoelasticity of a functionally graded cracked layer under thermomechanical shocks. Archives of Mechanics, 65(2):71–96, 2013.
  • [21] R. Nahta and B. Moran. Domain integrals for axisymmetric interface crack problems. International Journal of Solids and Structures, 30(15):2027–2040, 1993. doi: 10.1016/0020-7683(93)90049-D.
  • [22] M.M. Rokhi and M. Shariati. Implementation of the extended finite element method for coupled dynamic thermoelastic fracture of a functionally graded cracked layer. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 35(2):69–81, 2013. doi: 10.1007/s40430-013-0015-0.
  • [23] J.-H. Kim and G.H. Paulino. Isoparametric graded finite elements for nonhomogeneous isotropic and orthotropic materials. Journal of Applied Mechanics, 69(4):502–514, 2002. doi: 10.1115/1.1467094.
  • [24] E.J. Hearn. Mechanics of Materials. Butterworth-Heinemann, 1997.
  • [25] T.L. Anderson. Fracture Mechanics: Fundamentals and Applications. CRC Press, 2nd edition, 1994.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-06397580-b3a6-4bf5-99c8-84eb7c442032
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.