PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Grating-free high-x InP/InxGa1-xAs mid-wavelength infrared QWIP focal plane array

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Quantum Structure Infrared Photodetectors - QSIP : International Conference 2020/2022 (11 ; 2022 ; Kraków, Poland)
Języki publikacji
EN
Abstrakty
EN
The authors report the characteristics of a diffraction-grating-free mid-wavelength infrared InP/In₀.₈₅Ga₀.₁₅As quantum well infrared photodetector focal plane array with a 640 × 512 format and a 15 µm pitch. Combination of a normal incident radiation sensing ability of the high-x InxGa1-xAs quantum wells with a large gain property of the InP barriers led to a diffraction-grating-free quantum well infrared photodetector focal plane array with characteristics displaying great promise to keep the status of the quantum well infrared photodetector as a robust member of the new generation thermal imaging sensor family. The focal plane array exhibited excellent uniformity with noise equivalent temperature difference nonuniformity as low as 10% and a mean noise equivalent temperature difference below 20 mK with f/2 optics at 78 K in the absence of grating. Elimination of the diffraction-grating and large enough conversion efficiency (as high as ~70% at a -3.5 V bias voltage) abolish the bottlenecks of the quantum well infrared photodetector technology for the new generation very small-pitch focal plane arrays.
Twórcy
  • Electrical and Electronics Engineering Department, Middle East Technical University, Dumlupınar Bulvarı 1, 06800 Ankara, Turkey
  • Micro and Nanotechnology Program, Graduate School of Natural and Applied Sciences, Middle East Technical University, Dumlupınar Bulvarı 1, 06800 Ankara, Turkey
  • Micro and Nanotechnology Program, Graduate School of Natural and Applied Sciences, Middle East Technical University, Dumlupınar Bulvarı 1, 06800 Ankara, Turkey
autor
  • Electrical and Electronics Engineering Department, Middle East Technical University, Dumlupınar Bulvarı 1, 06800 Ankara, Turkey
  • Electrical and Electronics Engineering Department, Middle East Technical University, Dumlupınar Bulvarı 1, 06800 Ankara, Turkey
  • Electrical and Electronics Engineering Department, Middle East Technical University, Dumlupınar Bulvarı 1, 06800 Ankara, Turkey
Bibliografia
  • [1] Rogalski, A., Martyniuk, P. & Kopytko, M. Challanges of small-pixel infrared detectors: a review. Rep. Prog. Phys. 79, 046501 (2016). https://iopscience.iop.org/article/10.1088/0034-4885/79/4/046501
  • [2] Ivanov, R. et al. III-V based infrared detectors are imposing new standards. Proc. SPIE 11407, 114070Q-1-114070Q (2020). https://doi.org/10.1117/12.2558736
  • [3] Besikci, C. High-x InP/InxGa1-xAs quantum well infrared photode-tector. Infrared Phys. Technol. 95, 152-157 (2018). https://doi.org/10.1016/j.infrared.2018.10.018
  • [4] Peng, L. H., Smet, J. H., Broekaert, T. P. E. & Fonstad, C. G. Transverse electric and transverse magnetic polarization active intersubband transitions in narrow InGaAs quantum wells. Appl. Phys. Lett. 61, 2078-2080 (1992). https://doi.org/10.1063/1.108312
  • [5] Karunasiri, G. et al. Normal incident InGaAs/GaAs multiple quantum well infrared detector using electron intersubband transitions. Appl. Phys. Lett. 67, 2600-2602 (1995). https://doi.org/10.1063/1.115144
  • [6] Wang, S. Y. & Lee, C. P. Doping effect on normal incident InGaAs/GaAs long-wavelength quantum well infrared photode-tectors. J. Appl. Phys. 82, 2680-2683 (1997). https://doi.org/10.1063/1.366084
  • [7] Wang, S. Y. & Lee, C. P. Normal incident long-wavelength quantum well infrared photodetectors using electron intersubband transitions. Appl. Phys. Lett. 71, 119-121 (1997). https://doi.org/10.1063/1.119446
  • [8] Ozaki, K. et al. Development of mid-wavelength QWIP FPA. Proc. SPIE 5783, 736-746 (2005). https://doi.org/10.1117/12.603350
  • [9] Chou, S. T. et al. The influence of interface roughness on the normal incident absorption of quantum-well infrared photodetectors. Thin Solid Films 517, 1799-1802 (2009). https://doi.org/10.1016/j.tsf.2008.09.066
  • [10] Maimon, S. et al. Strain compensated InGaAs/InGaP quantum well infrared detector for midwavelength band detection. Appl. Phys. Lett. 73, 800-802 (1998). https://doi.org/10.1063/1.122006
  • [11] Besikci, C. Nature allows high sensitivity thermal imaging with type-I quantum wells without optical couplers: a grating-free quantum well infrared photodetector with high conversion efficiency. IEEE J. Quantum Electron. 57, 1-12 (2021). https://doi.org/10.1109/JQE.2021.3052188
  • [12] Besikci, C. & Balcı, S. V. Diffraction-grating-free very small-pitch high-x InP/InxGa1-xAs quantum well infrared photodetectors. IEEE Electron. Device Lett. 43, 1287-1290 (2022). https://doi.org/10.1109/LED.2022.3185535
  • [13] Cellek, O. O., Memis, S., Bostanci, U., Ozer, S. & Besikci, C. Gain and transient photoresponse of quantum well infrared photodetectors: a detailed ensemble Monte Carlo study. Physica E Low Dimens. Syst. Nanostruct. 24, 318-327 (2004). https://doi.org/10.1016/j.physe.2004.06.043
  • [14] Gunapala, S. D. et al. 1024 × 1024 pixel mid-wavelength and long-wavelength infrared QWIP focal plane arrays for imaging applications. Semicond. Sci. Technol. 20, 473-480 (2005). https://doi.org/10.1088/0268-1242/20/5/026
  • [15] Ozer, S., Tumkaya, U. & Besikci, C. Large format AlInAs-InGaAs quantum-well infrared photodetector focal plane array for midwavelength infrared thermal imaging. IEEE Photon. Technol. Lett. 19, 1371-1373 (2007). https://doi.org/10.1109/LPT.2007.903338
  • [16] Kaldirim, M., Arslan, Y., Eker S. U. & Besikci, C. Lattice-matched AlInAs-InGaAs mid-wavelength infrared QWIPs: characteristics and focal plane array performance. Semicond. Sci. Technol. 23, 085007 (2008). https://doi.org/10.1088/0268-1242/23/8/085007
Uwagi
1. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
2. The authors thank Prof. Serdar Kocaman for his contribution to this work in the flip-chip bonding of the FPA with the ROIC.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-062ea87a-5b19-4bbd-831a-fa63f55c6b20
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.