PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Treatment of swine wastewater in constructed wetlands cultivated with Tangola grass

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study aimed to evaluate the efficiency of constructed wetlands (CWS) cultivated with Tangola grass (Urochloa purpuracens and Urochloa arrecta) in the treatment of wastewater from pig farming. The CWS were subjected to an organic loading rate of 300 kg of BOD/(ha·day) from swine wastewater. We analyzed total solids, turbidity, color, total Kjeldahl N, and total P in the influent and effluent to the CWS every 30 days for a duration of 4 months. The whole plot factor was vegetation (CWS with and without Tangola grass). The subplot factor was assessment time (15, 45, 75, and 105 days of CWS operation). There was no statistical difference between CWS with and without in terms of the removal efficiency. After 105 days, average removals of 90–95% turbidity, 79–80% total solids, 76–82% color, 42–70% total Kjeldahl N, and 51–63% total P were obtained in all CWS. While Tangola grass did not enhance the removal efficiency of the parameters assessed in this study, it may be harvested to provide fodder for animals, making it a valuable addition to CWS.
Słowa kluczowe
Rocznik
Strony
13--24
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
  • Federal Institute of Education, Science and Technology of Espírito Santo, Campus Santa Teresa, Department of Agronomy, Brazil
  • Federal Institute of Education, Science and Technology of Espírito Santo, Campus Santa Teresa, Department of Agronomy, Brazil
  • Federal Institute of Education, Science and Technology of Espírito Santo, Campus Santa Teresa, Department of Agronomy, Brazil
  • Federal Institute of Education, Science and Technology of Espírito Santo, Campus Santa Teresa, Department of Agronomy, Brazil
  • California State University, Monterey Bay, Seaside, Department of Biology and Chemistry, USA
  • Federal Institute of Education, Science and Technology of Espírito Santo, Campus Santa Teresa, Departmentof Agronomy, Brazil
Bibliografia
  • [1] SZOGI A.A., LOUGHRIN J.H., VANOTTI M.B., Improved water quality and reduction of odorous compounds in anaerobic lagoon columns receiving pre-treated pig wastewater, Environ. Technol., 2018, 39 (20), 2613–2621. DOI: 10.1080/09593330.2017.1363294.
  • [2] WU W., CHENG L.C., CHANG J.S., Environmental life cycle comparisons of pig farming integrated with anaerobic digestion and algae-based wastewater treatment, J. Environ. Manage., 2020, 264, 110512. DOI: 10.1016/j.jenvman.2020.110512.
  • [3] DE LA MORA-OROZCO C., GONZÁLEZ-ACUÑA I.J., SAUCEDO-TERÁN R.A., FLORES-LÓPEZ H.E., RUBIO-ARIAS H.O., OCHOA-RIVERO J.M., Removing organic matter and nutrients from pig farm wastewater with a constructed wetland system, Int. J. Environ. Res. Publ. Health, 2018, 15, 1031. DOI: 10.3390/ijerph15051031.
  • [4] BHAMBRI A., KARN S.K., Biotechnique for nitrogen and phosphorus removal. A possible insight, Chem. Ecol., 2020, 36 (8), 785–809. DOI: 10.1080/02757540.2020.1777991.
  • [5] SEGANFREDO M.A., Environmental management in pig farming, EMBRAPA, Technological Information, Brasilia, Brasil, 2007 (in Portuguese).
  • [6] MATOS A.T., ABRAHÃO S.S., BORGES A.C., MATOS M.P., Influence of organic load rate on the performance of constructed wetland systems cultivated with forages, Eng. Sanit. Amb., 2010, 15 (1), 83–92, Online at: https://www.scielo.br/j/esa/a/YpnP4dVLTNyFs75jdBqtTvr/?format=pdf&lang=pt (in Portuguese).
  • [7] SAEED T., HAQUE I., KHAN T., Organic matter and nutrients removal in hybrid constructed wetlands: Influence of saturation, Chem. Eng. J., 2019, 371, 154–165. DOI: 10.1016/j.cej.2019.04.030.
  • [8] PARK J.B.K., SUKIAS J.P.S., TANNER C.C., Floating treatment wetlands supplemented with aeration and biofilm attachment surfaces for efficient domestic wastewater treatment, Ecol. Eng., 2019, 139, 105582. DOI: 10.1016/j.ecoleng.2019.105582.
  • [9] XU F., ZHU Y.J., WANG Y.Q., CHEN H.Y., ZHANG Y.L., HAO D., QI X.Y., DU Y.D., WANG B., WANG Q., ZHAO C. C., KONG Q., Coupling iron pretreatment with a constructed wetland-microbial fuel cell to improve wastewater purification and bioelectricity generation, J. Cleaner Prod., 2020, 276, 123301. DOI: 10.1016/j.jclepro.2020.123301.
  • [10] MATOS A.T., FREITAS W.S., BRASIL M.S., BORGES A.C., Influence of cultivated plant species in the redox conditions of constructed wetland systems, Eng. Agric., 2010, 30 (3), 518–526. DOI: 10.1590/S0100-69162010000300015 (in Portuguese).
  • [11] CHEN X., ZHU H., YAN B., SHUTES B., XING D., BANUELOS G., CHENG R., WANG X., Greenhouse gas emissions and wastewater treatment performance by three plant species in subsurface flow constructed wetland mesocosms, Chemosphere, 2020, 239, 124795. DOI: 10.1016/j.chemosphere.2019.124795.
  • [12] MATOS A.T., ABRAHÃO S.S., PEREIRA O.G., Agronomic performance of Tifton 85 grass (cynodon spp.) cultivated in constructed wetland systems used in the treatment of dairy wastewater, Rev. Amb. Agua, 2008, 3 (1), 43–53. DOI: 10.4136/ambi-agua.41 (in Portuguese).
  • [13] FIA F.R.L., MATOS A.T., FIA R., BORGES A.C., CECON P.R., Effect of vegetation in constructed wetlands treating swine wastewater, Eng. Sanit. Amb., 2017, 22 (2), 303–311. DOI: 10.1590/S1413- 41522016123972 (in Portuguese).
  • [14] FIA F.R.L., MATOS A.T., FIA R., BORGES A.C., BAPTESTINI G.C.F., Phosphorus dynamics in constructed wetlands systems treating swine wastewater, Eng. Sanit. Amb., 2020, 25 (1), 79–86. DOI:10.1590/S1413-41522020124591 (in Portuguese).
  • [15] MIRANDA S.T., MATOS A.T., MATOS M.P., SARAIVA C.B., TEIXEIRA D.L., Influence of the substrate type and position of plant species on clogging and the hydrodynamics of constructed wetland systems, J. Water Proc. Eng., 2019, 31, 1–8. DOI: 10.1016/j.jwpe.2019.100871.
  • [16] TEIXEIRA D.L., MATOS A.T., MATOS M.P., MIRANDA S.T., TEIXEIRA D.V., Modeling of productivity and nutrient extraction by the Vetiver and Tifton 85 grasses grown in horizontal subsurface flow constructed wetlands, J. Environ. Sci. Health, Part A. Toxic/Hazard. Subst. Environ. Eng., 2021, 56 (3), 248–256. DOI: doi.org/10.1080/10934529.2020.1868821.
  • [17] FIGUEIREDO Y.F., NICOLE L.R., SANTOS E.O.J., MAGIERO K.P.F., PIMENTEL V.A., Productivity of Tangola grass (Brachiaria mutica x Brachiaria arrecta) in autumn under different fertilization levels and rest, Nucleus, 2016, 13, 7–13. DOI: 10.3738/1982.2278.1535 (in Portuguese).
  • [18] TEDESCO M.J., GIANELLO C., BISSANI C.A., BOHNEN H., VOLKWEISS J.J., Analysis of soil, plants and other materials, 2nd Ed., UFRGS, Porto Alegre, Brazil, 1995 (in Portuguese).
  • [19] MATOS A.T., Solid waste and wastewater analysis manual, UFV Press, Viçosa, Brazil, 2015 (in Portuguese).
  • [20] R Core Team, R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna 2020, online at: https://www.R-project.org/
  • [21] VILLA A., FÖLSTER J., KYLLMAR K., Determining suspended solids and total phosphorus from turbidity: comparison of high-frequency sampling with conventional monitoring methods, Environ. Monit. Assess., 2019, 191, 605. DOI: 10.1007/s10661-019-7775-7.
  • [22] ZHANG C., ZHANG W., HUANG Y., GAO X., Analysing the correlations of long-term seasonal water quality parameters, suspended solids and total dissolved solids in a shallow reservoir with meteorological factors, Environ. Sci. Poll. Res., 2017, 24, 6746–6756. DOI: 10.1007/s11356-017-8402-1.
  • [23] NANDORF R.J., LO MONACO P.A.V., HADDADE I.R., PAULA L.I.S., SALLA P.H., VIEIRA G.H.S., Performance of filters composed of banana stalk in swine wastewater treatment, Caatinga, 2021, 34 (2), 479–485. DOI: 10.1590/1983-21252021v34n224rc.
  • [24] BREZONIK P.L., BOUCHARD R.W., FINLAY J.C., GRIFFIN C.G., OLMANSON L.G., ANDERSON J.P., ARNOLD W.A., HOZALSKI R., Color, chlorophyll a, and suspended solids effects on Secchi depth in lakes: implications for trophic state assessment, Ecol. Appl., 2019, 29 (3), e01871. DOI: 10.1002/eap.1871.
  • [25] BENDER A.F., SOUZA J.B., VIDAL C.M.S., Advanced treatment technologies for the removal of color and phenol from the effluent of paper industry wastewater, Cien. Flor., 2019, 29 (2), 1H+. DOI: 10.5902/1980509832503.
  • [26] VYMAZAL J., Removal of nutrients in various types of constructed wetlands, Sci. Total Environ., 2007, 380 (1–3), 48–65. DOI: 10.1016/j.scitotenv.2006.09.014.
  • [27] SAMSON M.E., CHANTIGNY M.H., VANASSE A., MENASSERI-AUBRY S., ROYER I., ANGERS D.A., Management practices differently affect particulate and mineral-associated organic matter and their precursors in arable soils, Soil Biol. Biochem., 2020, 148, 107867. DOI: 10.1016/j.soilbio.2020.107867.
  • [28] MIRANDA S.T., MATOS A.T., MATOS M.P., SARAIVA C.B., Efficiency of constructed wetland systems of horizontal subsurface runoff considering different support materials and cultivation position of plant species, Rev. Amb. Agua, 2020, 15 (2), 1–13. DOI: 10.4136/ambi-agua.2476 (in Portuguese).
  • [29] COELHO J.C., Floating aquatic macrophytes in the removal of chemical elements from wastewater, MSc Thesis, São Paulo State University, Faculty of Agronomic Sciences, Botucatu, Brazil, 2017 (in Portuguese).
  • [30] GIKAS G.D., TSIHRINTZIS V.A., AKRATOS C., Performance and modeling of a vertical flow constructed wetland–maturation pond system, J. Environ. Sci. Health, Part A. Toxic/Hazard. Subst. Environ. Eng., 2011, 46 (7), 692–708. DOI: 10.1080/10934529.2011.571579.
  • [31] VALENTIM M.A.A., Performance of cultivated wetland beds for sewage treatment: contributions to design and operation, PhD Thesis, Campinas State University, Campinas, Brazil, 2003 (in Portuguese).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-062cd9c1-d50a-4206-bbff-2a211431db9f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.