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POSITIVE SOLUTIONS
FOR THE ONE-DIMENSIONAL p-LAPLACIAN
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Abstract. We prove the existence of positive solutions for the p-Laplacian problem

—(r(H)o(u)) = Ag(t)f(u), te(0,1),

(0) = Hi(u'(0)) =0,
cu(l) + H2(v'(1)) =0
where ¢(s) = [s|P"%s, p > 1, H; : R — R can be nonlinear, i = 1,2, f : (0,00) — R is

p-superlinear or p-sublinear at co and is allowed be singular (+o00) at 0, and A is a positive
parameter.
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1. INTRODUCTION

Consider the one-dimensional p-Laplacian problem
=) (1.1)
0

where ¢(s) = |s|P~2s,p > 1, a1, ay are nonnegative constants with a; +ag > 0, and \ is
a positive parameter. We shall adopt the following assumptions.

(Al) H; : R — R are odd, nondecreasing functions with a; + |H;| # 0, i = 1,2.
Furthermore, if a; = 0 then H; is strictly increasing, ¢ € {1, 2}.
(A2) r:[0,1] — (0,00) is continuous.
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(A3) f:(0,00) — R is continuous and there exists a constant § € [0,1) such that

limsup 2°|f(2)| < oco.
z—0t

(A4) g : (0,1) — (0,00) is continuous and w=°(t)g(t) € L'(0,1), where
w(t) = min(¢, 1 —t).

(A5) There exist ¢ € {1,2} and a constant a > 0 such that a; > 0 and H;(z) < az
for z > 0.

By a solution of (1.1), we mean a function u € C'[0,1] with ¢(u’) absolutely

continuous on [0, 1], and satisfying (1.1).
Set fo = lim L5, foo = lim L&

Our main result is the following theorem.

Theorem 1.1.

(i) Let (A1)—(A4) hold and suppose fo, = 00. Then there exists a constant \g > 0
such that for X < Ao, (1.1) has a positive solution uy with uy — oo as A — 0T
uniformly on compact subsets of (0, 1).

(ii) Let (A1)—(A5) hold. Suppose fso =0 and lim,_,o f(2) = co. Then there exists
a constant 5\0 > 0 such that for A > 5\0, (1.1) has a positive solution uy with
uy — 00 as A — oo uniformly on compact subsets of (0,1).

(iii) Let (A1)—(A5) hold. Suppose f > 0, foo = 0, and fo = oo. Then (1.1) has
a positive solution for all A > 0.

In particular, our results when applied to the model example

~eot)) = 35 (g +ur). te @,
) — (£ (0))" = 0
1) + ((1)" =0,

where m, n are positive odd integers, C, 8,6 € R with 8+ § < 1, gives the existence
of a large positive solution when A > 0 is small, C' < 0 and ¢ > p — 1 (Theorem 1.1
(i), or when A is large, C' < 0, and 0 < ¢ < p — 1 (Theorem 1.1 (ii)), and a positive
solution for all A > 0 when C > 0,0 >1—p, and 0 < ¢ < p—1 (Theorem 1.1 (iii)).

Since our results hold (with obvious modifications) if (0,1) is replaced by (r1,r2)
where 0 < 71 < rg, it can be applied to the study of positive radial solutions of the
p-Laplacian on an annulus with nonlinear boundary conditions:

— div(|VuP72Vu) = Ag(|z]) f(u), m1 < || <72,
a;u+ H; (%) =0, |z| =r; i €{1,2},

where n denotes the outer unit normal vector on Q = {x : r; < |z| < r2}, which has
been studied extensively over the years (see [11]).
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Our results are motivated by the work in [17], in which the existence of a positive
solutions to the equation

—(o(u)) = g(t)f(u), te(0,1),

ie. (1.1) with r = 1, A = 1, with one of the following nonlinear boundary conditions

u(0) — Hy (u'(0)) = u(l) + Hi(u'(1)) = 0,
u(0) — Hy (u'(0)) = u'(1) =0,
u'(0) _o, u(1) + Hi(u'(1)) = 0,

was established when f is nonsingular, nonnegative and satisfies either fy = co and
foo =0, 0r fo =0 and fo, = oc0.

Note that our nonlinearity f is allowed to be singular (+oc) at u = 0, and
seeking positive solutions in the singular semipositone case i.e. lim, o+ f(u) = —oc0c is
particularly challenging due to the absence of the maximum principle (see [13]). For
the literature on the equation in (1.1) with linear boundary conditions, we refer the
reader to [1,2,6,7,9,10,14,18,19] for the singular/nonsingular semipositone case, and
to [8,12,16] for the nonpositone case. Related results in the PDE case can be found
n [3,5,15].

2. PRELIMINARY RESULTS

We shall denote the norm in LP(0,1) by || - [,
We first recall the following fixed point of Krasnoselskii’s type.

Theorem 2.1 ([4, Theorem 12.3]). Let E be a Banach space and A : E — E be
a completely continuous operator. Suppose there exist h € E,h # 0 and positive
constants r, R with r # R such that

(a) Ify € E satisfies y = 0 Ay for some 0 € (0,1] then |y|| # r,
(b) Ify € E satisfies y = Ay + &b for some £ > 0 then |ly|| # R.

Then A has a fized point y € E with min(r, R) < ||ly|| < max(r, R).

For the rest of the paper, we let ro = infycjo,1)7(t). In the following lemmas,
we suppose (A1) and (A2) hold.

Lemma 2.2. Let h € L'(0,1). Then the problem
(rt)o(w))" = h(t), 0<t<1,

)6
aru(0) - Hy(u'(0)) =0, (2.1)
azu(1) + H(u/'(1)) = 0

1

has a unique solution uw = Sh € C'[0,1]. Furthermore S : L'(0,1) — C]0,1] is
completely continuous and
[Shler < G~ UWH» (2.2)

where G(z) = H;(Fo2)/a; + 20 1(2/r0)z, o = ¢~ 1(1/7(0)), and i € {1,2} is smallest
with a; > 0.
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Proof. Without loss of generality, we suppose a; > 0. By integrating, it follows that
(2.1) has a unique solution w, given by

/¢ ( ¢E§()+f°> s, (2.3)

where u/(0) = £ € R is the unique solution of

9 =a ( +/¢1< ¢<f(s)+f°)>
(00 + Y _
o (P57

The fact that H has a unique solution on R follows from the strictly increasing of G
together with lime_,o, G(§) = 0o and limg_, o G(£) = —c0.

Since H(€) > 0 if € > ¢~ (T(O ||h||1) and H(E) < 0if € < —¢~ (ﬁ”h\\l),
it follows that

e <o (T(lo)hnl) — g (IA]1). (2.4)

lu(t)| + |u'(t)| < H,y (7o(¢~" (I]l1)) 426t (2|h||1>

a1 To

Hence

for t € [0,1], from which (2.2) follows. Hence S maps bounded sets in L'(0,1) into
bounded sets in C'*[0, 1] and hence relatively compact subsets in C[0, 1]. We verify next
that S is continuous. To this end, let (h,) C L(0,1) be such that h, — h in L*(0,1)
and let u,, = Sh,,,u = Sh. Then

un(t Hl gn /d) < fn( ;’fo >d$,

where &, = u/,(0) satisfies H(&,) = 0. We claim that
I = Bl

ol6,) —o(0)) < (25)
Indeed, if ¢(§n) > ¢(£>+ HhT(fO’)ZHl then &, > & and T‘( ) fn —|—f0 hy, > T‘ —i—fo
for s € [0,1], which implies 0 = H(&,) > H(§) = 0, a contradiction. On the other
hand, if ¢(¢,) < ¢(€) — 271t then &, < € and 7(0)p(&n) + [ hn < 7(0)6(E) + [y b

for s € [0, 1], which implies 0 = H(§,,) < H(&) = 0, a contradiction. Thus ( ) holds.
In particular, ¢(&,) — ¢(€) and therefore &, — £ as n — oo. Since

[ (r06E) + ok
+0/¢ ( (5) 0 >ds

up(t) =
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for t € [0,1], and u is given by (2.3), we deduce from the uniform continuity of =1 on
bounded intervals that (u,) converges to w uniformly on [0, 1]. Hence S is completely
continuous by the Ascoli-Arzela theorem, which completes the proof. O

We next establish a comparison principle

Lemma 2.3. Let hy,hy € L*(0,1) with hy > hy on (0,1) and let ui,us € C[0,1]
satisfy
—(r(t)p(u;)) =hy, 0<t <1,

)

aru1(0) — Hi(uy(0)) > aru2(0) — Hi(us(0)),
a2u1(1) —|—H2(u'1 /2

Then uy; > ug on [0, 1].

Proof. Suppose on the contrary that there exists ¢ € (0,1) such that uy(to) < uz2(to).
Let (o, 8) C (0,1) be the largest open interval containing to such that u; < wus

on (a, B).
Multiplying the equation

—(r(t)(¢(uy) — d(uy))’ = h1 — hz on (0,1)
by u; — us and integrating on («, ), we obtain

B)(¢(ur(B) — d(us(B))(ur(B) — u2(B))
a)(¢(uy () = d(ug(a))(ur(e) — uz(a))

—(
+7r(

5 (2.6)

B
+/NUWWD—¢WQW4—%M#:/M4—@Xm—UﬁﬁSQ

[

We claim that (¢(u)(8) — ¢(ub(B8))(ur(B) — uz2(B)) < 0. Clearly it is true if
u1(B) = ua(f). Suppose u1 () < uz(f). Then 8 =1 and it follows from the boundary
inequality at 1 that

Hy(uy (1)) = Ha(u5(1)) = az(uz(1) —ui(1)) 20

with strict inequality if az > 0. Since Hs is nondecreasing and is strictly increasing if
as = 0, it follows that u}(1) > u4(1), which proves the claim.

Similarly, we obtain (¢(u] () — ¢(ub(a))(ur (@) — uz(a)) > 0. Hence (2.6) together
with the increasing of ¢ gives

B

/mwwwn—¢w9x%—uaw=a

[e3

from which it follows that uj = u} on [0, 1]. Consequently, u; = us + C on [a, §] for
some constant C' < 0. If a > 0 or § < 1 then C = 0. Suppose « =0 and = 1. Then
the boundary inequalities at 0 and 1 imply a;C > 0 and a3C > 0. Since a1 + a2 > 0,
we reach a contradiction if C' < 0. Hence C' = 0 in both cases i.e. u; = us on (a, 8),
a contradiction. Thus u; > ug on [0, 1], which completes the proof. O
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Remark 2.4. Lemma 2.2 holds if 0 and 1 are replaced by a and b respectively, where
0<a<b<1, and the case when H; =0,a; > 0 where i € {1,2} is included.

The next lemma provides an extension of [9, Lemma 3.4] to include the case when
H; are nonlinear, ¢ = 1, 2.

Lemma 2.5. Let h € L*(0,1) with h > 0 and let u € C1[0, 1] satisfy

(r(t)p(u’))
a1u(0) —
agu(l) + Ha

fullo > w2 (20) o unp ).

where m = 270+ and G s defined in Lemma 2.1. Then
u(t) 2 cfuflocw(t) (2.7)

for t € 0,1], where ¢ = min{1/4,¢~* (ro/||7|lx) /4m}.
Proof. Let v € C[0, 1] be the solution of

h, 0<t<17

"(0) =
(

<
Hi(u
(u'(1)) =

Suppose

a1v(0) — Hy (v'(

azv(1) + Ha(v'(1)) = 0.
Then v > v on [0, 1] in view of Lemma 2.2. Suppose ||u||o = |u(7)]| for some 7 € (0,1).
If u(7) < 0 then it follows from (2.2) that ||ullec = —u(7) < —v(7) < G(o~1(||A]1),

a contradiction. Hence u(7) > 0. B
Let w € C*[0, 7] be the solution of

A calculation shows that if a; > 0 then

oty = O <r<o><z><w;<8> + f;h) s, (2.9

where w’(0) = £ is the unique solution of

B o (ot

fo h) ds = ||u|| oo, (2.9)
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while if a; = 0 then w/(0) = 0 and

— Julloo — /¢ ( /h)d (2.10)

By Remark 2.4, u > w on [0, T]. Suppose a; > 0. Then w'(0) > 0 for otherwise (2.8)
gives ||ul|oo = w( ) < ¢ L (||h]l1/r0)), a contradiction. Using the inequality

¢~ (@ +y) <m(¢” (2) + ¢~ (y)) for 2,y >0,

we obtain

/q5 ( w(g)Jrf0 >d5<m(¢_1(r£2)> '(0)+ o7 <|];”1>). (2.11)

Since w(0) = H1(&)/aq, it follows from (2.9) and (2.11) that

w(0) + myw! (0) > ulloo — m™" (”h'l) > fulloo/2,

where m; = ma¢~1(r(0)/ro). If w(0) > |jul|eo/4 then since w’ > 0 we get
w(t) > |Julloo/4 > |lulleot/4 for t € [0,7]. On the other hand, if miw’(0) > |julleo/4
then (2.8) gives

o> 6 (L) o 5 0Ol
Irloe dm (2.12)
_ ¢ (r(0)/lIrfloo) [l t
4m
for ¢ € [0, 7]. Suppose next that a; = 0. Then (2.10) gives
w(t) 2 Jlulloo — ¢~ ([1ll1/70) = |Julloct/2 (2.13)

for t € [0,7]. Next, let z € C1[0,1] be the solution of

(r)e(2)) =h, T<t<l,
A7) = [[ulloo,

azz(1) + Ha(Z'(1)) = 0.

A calculation shows that if as > 0 then

sty = BB f (mnwig +J, h) ds, (214)
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where 2/(1) = ¢ is the unique solution of

H@) [ [ —rWew) + [Ph)
- ) +/¢ ( ) >d5—||u||oo, (2.15)

(s

while if a2 = 0 then w’(1) = 0 and

~ Jullos - / ! (j) / h) (2.16)

for t € [r,1]. By Remark 2.4, v > z on [7' 1]. Suppose az > 0. Then 2'(1) < 0 for
otherwise (2.14) gives |[ullc = 2(7) < ¢~ (||k||1/70)), a contradiction. Since

[ ——

and z(1) = — 200 i follows from (2.15) that

az

2(1) = mez'(1) 2 [lulleo/2,

where my = m¢=1(r(1)/rg). If 2(1) > ||ulls/4 then since 2’ < 0 we get z(t) >
lu)loo/4 > (Jlulloo/4)(1 —t) for t € [1,1]. On the other hand, if —mso2’(1) > ||u||eo/4
then (2.14) gives

2(t) > —p! <”1;<”1> )Z/(l)(l by > £ 00l (1 =)
> 2 (2.17)
_ ¢ (ro/lIrllse) lulloe (X — 2)
4m
for t € [7,1]. Finally if ag = 0 then (2.16) gives
—1 (IRl [[ulloo (1 — t)
2(t) 2 ||ulloo — < Tol) > 5 (2.18)

for t € [r,1]. Combining (2.12),(2.13), (2.17), and (2.18), we obtain (2.7), which
completes the proof. O

3. PROOF OF THE MAIN RESULT

Proof of Theorem 1.1. Let E = C]0,1] be equipped with || - ||cc and A > 0. For
v € C[0,1], define Syv(t) = —Ag(t)f(¥), where ¥ = max(v,w). Then it follows from
(A3) that

1Sx0(t)] < AC, L 9” < ACLk(t)



Positive solutions for the one-dimensional p-Laplacian. . . 683

for t € (0,1), where k(t) = 50(2) and C,, is a positive constant depending on an upper
bound of ||v||o. Hence by (A4), Sy : E — L'(0,1) and maps bounded sets in C[0, 1]
into bounded sets in L1(0,1). Using the Lebesgue dominated convergence theorem, we
see that S is continuous. By Lemma 2.1, there exists a unique solution u = Thv to

the problem

(3.1)

Since T\ = S o Sy, where S is given by Lemma 2.1, it follows that Ty : £ — E is
completely continuous. Without loss of generality, we suppose a; > 0.
(i) Let M > 0 be such that

g(O)|f(2)] < Mg(t)=~° (3.2)

for t € (0,1) and 2z € (0,1/¢), where ¢ is given by Lemma 2.3. Fix A € (0,1) so that
G(p~(AM||k[|1) < 1/c. We claim that

(a) If u € E satisfies u = 0T)\u for some 0 € (0,1] then ||ul|e # 1/c.

Indeed, let u € E satisfy u = 0Tyu for some 6 € (0,1). Suppose ||u||oc = 1/c. Then,
since ¢ < 1, we get |||l < 1/¢ and so (3.2) gives

[Sxu(t))] < AME(t)
for t € (0,1). Hence it follows from Lemma 2.1 that
1/e = |lulls = 01S(Sxu)lloe < G(¢7ISxull1) < G(o™ (AMK]1),

a contradiction, which proves (a).

(b) There exists Ry > 1/c such that if v = Thu + 7 for some v > 0 then
[lu]loo < Ra.

Let u € E satisfy u = Thu + v for some v > 0. Then v — v = Thu and therefore
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Using (A4) and the fact that lim, , f(2) = 0o, it follows that there exists a constant
mgo > 0 such that f(z) > —mgz~? for z > 0. Hence

Ag(t)f (@) = =Amog(t)ia~" > —Amok(t) = —ha(t) (3.3)

for t € (0,1).
Suppose

SR

h
Julloe = Ry > max {2m¢1 (””) LG (Ihally),

b

u(t) = clluflaow(t) = collufloo =1 (3.4)

Then Lemma 2.3 gives u > 0 on [0, 1] and

for ¢ € [1/4,3/4], where ¢y = ¢/4. Hence
Ag(t)f (@) = Ag(t)f(u) = Ag(t) feollulloo)
for t € [1/4,3/4], where f(z) = tu;lf f(t). Let v € C[1/4,3/4] satisfy
~(r(0h) = 9(0), 1/4<t <B/4

o(1/4) = 0, (3.5)
v(3/4) = 0,

and let v; = ()\f(co||u||oo))ﬁvo. Then v; satisfies

—(r(t)¢(v1)) = Ag(t) fleollullo), 1/4 <t < 3/4,
’U1(1/4) = O,
v (3/4) = 0.

By the comparison principle, u > v, on [1/4,3/4], which implies
_ 1
[ulloe = (M (collullos)) "~ llvo]loos (3.6)
i.e.

Feollulle) 1

a5~ Allwoll% ™

Since lim pr(f)l = o0, it follows that lim % = 0o and therefore we reach a con-
Z—00

Z—r00
tradiction if ||ul|c is large enough. Thus ||ulle # Ra for Ry >> 1, i.e. (b) holds. By
Theorem 2.1, Ty has a fixed point uy € E with ||uy|lcc > 1/c. By making A smaller if
necessary so that

e fomo (1200 s s | <1,
0
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where h) is defined in (3.3), it follows from Lemma 2.3 that uy > c||lup|cow > w
on (0,1). Hence @y = uy and uy is a positive solution of (1.1).

We verify next that |Jux|leoc — 00 as A — 0. Let b > 1, My > 0 be such that
f(z) >0 for z > b and

g f(z) < Mog(t)="°
for z € (0,b). Then

9(t) f(ux) < Mok(t) + g(t) f (max(ux, b)) (3.7)
for t € (0,1), where f(s) = supy<;<, f(t) for s > b. Note that f is nondecreasing.
Hence, since k > g on (0,1), (3.7) implies

~(r(00)) = M0 () < A (Mo + flmax(luloc-D) KO (38

for t € (0,1). Let wy € C'[0,1] satisfy

Then it follows from (3.8) and Lemma 2.2 that

1

1

ux AP (Mo + f(max(ur]loe: 1)) wo
n (0, 1). Consequently,

Mo + f(max((lusloe b)) o 1

luxlfss ~ AMuwolle

(3.9)

Since |Juy|lc > 1 and the right side of (3.9) goes to oo as A — 07, it follows that
[lur]loo = 00 as A — 0T In view of (2.7), we see that uy — oo as A\ — 0% uniformly
on compact subsets of (0,1).

(ii) Without loss of generality, suppose Hy(z) < az for z > 0. Then

_H (Foz)

ay

G(z) +2071(2/r0)z < Az (3.10)

for z > 0, where A = afga;* + 2071 (2/ro).
Choose
K > max {2m¢ =" (mollkl[1/r0) , Ad™" (mo|lk[|1)}

where my is defined in (3.3). Then

K¢~ (N) > max {2m¢~ ' ([lhall1/70), G(¢~ (Ihall1, 4/c)}

where we recall that hy = Amgk.
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Suppose A > Ao, where \g > 1 is large enough so that
FleoKe™ (X)) > (K/|lvolloc)” ™",

where vy is defined in (3.4). Note that this is possible since lim,_,~ f(z) = co. We claim
what follows.

(c) If u € E satisfies u = Thu +~y for some v > 0 then ||ullw # K¢~1(N).

Let u € E satisfy u = Thu + ~ for some v > 0. Suppose that ||u|/cc = K¢~1(N).
Then Lemma 2.3 gives (3.4) above. Hence (3.6) holds, i.e.

AKP™ = [lull55 > Mf(co Ko™ (V) [lvolIES,

which implies f(coKd (No)) < (K/|lvollos)’” ", a contradiction. Hence [|ufso #
K¢~1()), as claimed.

(d) There exists Ry >> 1 such that if u € E satisfies u = 0T\u for some 0 € (0,1]
then ||ullco # Ra.

Let u € E satisfy u = T\u for some 6 € (0,1). Suppose ||u|loc = Ry > max(1,b).
Then ||@ ||oo > b and (3.7) gives

g(t)f (@) < Mok(t) + g(t) f (max(a, b))

< Mok(t) + g(8)f ([[ull )

for t € (0,1), from which (3.10) and Lemma 2.1 imply

lluloo <0G~ (N|lg(t) f(@) ||1) < G(d™ (N M| k|l1 + ||g||1f(Hu||OO)))
< A Ml + gl Fllull))] 7.

Consequently,
Mollklls + llglh F(llullee) o 1
Julf RV
Since A
lim MoH’fIIlzﬂngf(Z) —0,

we reach a contradiction if R is large enough, which proves the claim. By Theorem 2.1,
Ty has a fixed point uy with ||uy|lec > K¢~1(N\). By making A larger if necessary so
that cK¢~1(\) > 1, it follows from Lemma 2.3 that uy > c||uy|lcew > w on (0,1),
i.e. uy = @) is a positive solution of (1.1). Clearly uy — oo as A — oo uniformly on
compact subsets of (0,1).

(iii) Let zg € C'[0,1] be the solution of
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Let A > 0 and choose M > 0 large enough so that ()\M)ﬁcHzOHOO > 1. Since
fz) _

lim S =

L 00, there exists a constant p € (0,1) such that
z—0

f(z) > MzPt

for z € (0, p]. For v € E, define u = Ayv to be the unique solution of

—(r@®o(u)) = Ag(t)f(v), 0<t<1,
a1u(0) — Hi(u'(0))
azu(1) + Hy(u/'(1)) =

where ¥ = max (v, pow), po = cp and c is given by Lemma 2.3. Then Ay : E — E is
completely continuous. We claim that

(e) If u € E satisfies u = Axu -+ for some v > 0 then ||ul|e # p-

Indeed, let u € E satisfy u = Ayu+~ for some vy > 0, and suppose that ||ul/s = p.
Since

—(r(t)o(u')) = Ag(t) f(a) >0, 0 <t <1,

it follows from Lemma 2.3 with h = 0 that u(t) > pow(t) for t € (0,1), i.e. u = u.
Hence

Ag() f(@) > AMg(t)yu?~" > )\Mpg_lg(t)wp_l(t)

for t € (0,1). By Lemma 2.2, u > ()\M)ﬁp(]Z(] on (0,1), which implies
1
p = llullse = (AM)>=T poz0 | -

Consequently, (AM)ﬁC”ZOHOO < 1, a contradiction with the choice of M. Hence
lu]lco # p as claimed. Using the same argument as in (d) of (ii) above, we see that
the following holds.

(f) There exists Ry >> 1 such that if u € E satisfies u = 0 Ayu for some 0 € (0,1]
then ||u)|oo # Ra.

Hence Ay has a fixed point uy in E with ||uy|lcc > p. By Lemma 2.3, uy > pow
on [0,1], i.e. @y = uy on [0, 1] and therefore uy is a positive solution of (1.1). This
completes the proof of Theorem 1.1. ]
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