PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modification of Axial Distribution of Fragment Velocity in Preformed Fragmentation Warheads

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Fragment velocity is a crucial parameter for evaluating the destructive capability of a warhead, and it is typically calculated using the Gurney formula with corrections. The currently established correction formulas can determine the axial distribution of natural fragment velocity within the shell, but for a preformed fragmentation warhead, energy losses due to the existence of fragment gaps lead to calculated results that are larger than the actual values, making it unsuitable for accurate calculation of the axial distribution of fragment velocity in such warheads. This paper introduces a filling ratio correction function based on the concept of effective charge and establishes a calculation model for the axial distribution of fragment velocity in preformed fragmentation warheads. The numerical simulation method was validated using prototype ground static explosion test data, then the influence of key parameters such as charge diameter (d), length-diameter ratio (δ), and filling ratio (β) on the axial distribution of fragment velocity was investigated. The relationships between the three parameters (a, m, c) in the filling ratio correction function and the characteristic parameters were derived, and the filling ratio correction function and the calculation formula for the axial distribution of fragment velocity were fitted. Comparisons with existing empirical formulas indicate that the formulas established in this paper offer higher calculation accuracy, with an error of no more than 4.65% compared to measured values, and they can reliably determine the axial distribution of fragment velocity in preformed fragmentation warheads, providing significant practical application value.
Rocznik
Strony
22--52
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
autor
  • Naval University of Engineering, China
  • Xi‘an Modern Chemistry Research Institute, China
autor
  • Naval University of Engineering, China
  • Xi‘an Modern Chemistry Research Institute, China
autor
  • Xi‘an Jiaotong University, China
Bibliografia
  • [1] Martineau, R.L.; Anderson, C.A.; Smith, F.W. Expansion of Cylindrical Shells Subjected to Internal Explosive Detonations. Exp. Mech. 2000, 20: 219-225; https://doi.org/10.1007/BF02325049.
  • [2] Hutchinson, M.D. The Escape of Blast from Fragmenting Munitions Casings. Int. J. Impact Eng. 2009, 36: 185-192; https://doi.org/10.1016/j.ijimpeng.2008.05.002.
  • [3] Li, X.; Wang, W.; Liang, Z. Research Progress on Acceleration Ability of Explosive Detonation to Metal Shell. J. Projectiles, Rockets, Missiles and Guidance 2022, 42: 7-14.
  • [4] Gurney, R.W. The Initial Velocities of Fragments from Bombs, Shells and Grenades. Report No 405, Ballistic Research Laboratories (BRL), Aberdeen Proving Ground, USA-MD, 1943.
  • [5] Karpp, R.R.; Predebon, W.W. Calculations of Fragment Velocities from Naturally Fragmenting Munitions. Report No 2509, Ballistic Research Laboratories (BRL), Aberdeen Proving Ground, USA-MD, 1975.
  • [6] Szmelter, J.; Davies, N.; Lee, C.K. Simulation and Measurement of Fragment Velocity in Exploding Shells. J. Battlefield Technol. 2007, 10: 1-7.
  • [7] Hu, N.; Zhu, X.; Chen, C. Theoretical Calculation of the Fragment Initial Velocity Following Aerial Explosion of the Cylindrical Warhead with Two Terminals. IOP Conf. 2017, 274: 1-8.
  • [8] Hennequin, E. Influence of the Edge Effects on the Initial Velocity of Fragments from a Warhead. Proc. 9th Int. Symp. Ballistics, Shrivenham, UK, 1986.
  • [9] Randers, P.G. An Improved Equation for Calculating Fragment Projection Angles. Proc. 2nd Int. Symp. Ballistics, Daytona Beach, USA, 1976.
  • [10] Grisaro, H.; Dancygier, A.N. Numerical Study of Velocity Distribution of Fragments Caused by Explosion of a Cylindrical Cased Charge. Int. J. Impact. Eng. 2015, 86: 1-12; https://doi.org/10.1016/j.ijimpeng.2015.06.024.
  • [11] Charron, Y.J. Estimation of Velocity Distribution of Fragmenting Warheads Using a Modified Gurney Method. Report ADA074759, Air Force Inst. of Tech. WrightPattersonafb Oh School of Engineering, USA-OH, 1979, pp. 113-116.
  • [12] Zulkowski, T. Development of Optimum Theoretical Warhead Design Criteria. Report No AD-B015617, Naval Weapons Center, China Lake, USA-CA, 1976.
  • [13] Felix, D.; Colwill, I.; Stipidis, E. Real-time Calculation of Fragment Velocity for Cylindrical Warheads. Def. Technol. 2019, 15: 264-271; https://doi.org/10.1016/j.dt.2019.01.007.
  • [14] Feng, S.; Cui, B. An Experimental Investigation for the Axial Distribution of Initial Velocity of Shells. Acta Armamentarii 1987, 4: 60-63.
  • [15] Huang, G.; Li, W.; Feng, S. Axial Distribution of Fragment Velocities from Cylindrical Casing under Explosive Loading. Int. J. Impact Eng. 2015, 76: 20-27; https://doi.org/10.1016/j.ijimpeng.2014.08.007.
  • [16] Guo, Z.; Huang, G.; Liu, C. Velocity Axial Distribution of Fragments from Noncylindrical Symmetry Explosive-filled Casing. Int. J. Impact Eng. 2018, 118: 1-10; https://doi.org/10.1016/j.ijimpeng.2018.03.011.
  • [17] Liao, W.; Jiang, J.; Men, J. Effect of the End Cap on the Fragment Velocity Distribution of a Cylindrical Cased Charge. Def. Technol. 2021, 17: 1052-1061; https://doi.org/10.1016/j.dt.2020.06.024.
  • [18] Gao, Y.; Feng, S.; Yan, X. Axial Distribution of Fragment Velocities from Cylindrical Casing with Air Parts at Two Ends. Int. J. Impact Eng 2020, 140: 103535-103545; https://doi.org/10.1016/j.ijimpeng.2020.103535.
  • [19] Lloyd, R.M. Conventional Warhead Systems Physics and Engineering Design. Virginia 1: American Institute of Aeronautics and Astronautics, 1998.
  • [20] Jaansalu, K.M.; Dunning, M.R. Fragment Velocities from Thermobaric Explosives in Metal Cylinders. Propellants, Explos. Pyrotech. 2007, 32: 80-86.
  • [21] Martineau, R.L.; Anderson, C.A.; Smith, F.W. Expansion of Cylindrical Shells Subjected to Internal Explosive Detonations. Exp. Mech. 2000, 20: 219-225.
  • [22] Deng, H.; Quan, J.; Liang, Z. Influence of Eccentric Initiation on Energy Distribution Gain of a Warhead Charge. Explos. Shock Waves 2022, 42(5): paper 052201; https://doi.org/10.11883/bzycj-2021-0280.
  • [23] Miao, C.; Liang, Z.; Deng, D. Numerical Simulation Influence of Curvature Radius on Focusing Warhead. Ordnance Industry Automation 2018, 37: 93-96.
  • [24] Li, X.; Wang, W.; Liang, Z. Fragment Dispersion Characteristics of the “CrossShape” Built-in Fragmentation Directional Warhead. Explos. Shock Waves 2023, 43(6): 1-11.
  • [25] Gao, Y.; Feng, S.; Zhang, B. Effect of the Length-Diameter Ratio on the Initial Fragment Velocity of Cylindrical Casing. IOP Conf. Ser. Mater. Sci. Eng. 2019, 629: 12-20.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-062796da-5d0b-40c5-a237-b8baf986b957
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.