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Abstract: Fragment velocity is a crucial parameter for evaluating the destructive 
capability of a warhead, and it is typically calculated using the Gurney formula 
with corrections. The currently established correction formulas can determine the 
axial distribution of natural fragment velocity within the shell, but for a preformed 
fragmentation warhead, energy losses due to the existence of fragment gaps lead 
to calculated results that are larger than the actual values, making it unsuitable for 
accurate calculation of the axial distribution of fragment velocity in such warheads. 
This paper introduces a filling ratio correction function based on the concept of 
effective charge and establishes a calculation model for the axial distribution of 
fragment velocity in preformed fragmentation warheads. The numerical simulation 
method was validated using prototype ground static explosion test data, then 
the influence of key parameters such as charge diameter (d), length-diameter 
ratio (δ), and filling ratio (β) on the axial distribution of fragment velocity was 
investigated. The relationships between the three parameters (a, m, c) in the 
filling ratio correction function and the characteristic parameters were derived, 
and the filling ratio correction function and the calculation formula for the axial 
distribution of fragment velocity were fitted. Comparisons with existing empirical 
formulas indicate that the formulas established in this paper offer higher calculation 
accuracy, with an error of no more than 4.65% compared to measured values, and 
they can reliably determine the axial distribution of fragment velocity in preformed 
fragmentation warheads, providing significant practical application value.
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1	 Introduction

Fragments are one of the main destructive elements of fragmentation warheads, 
and generate impact damage on targets through high-speed projection by 
explosive driving. Based on the fragment generation process, they can be 
classified into natural, semi-preformed, and preformed fragments. Under the same 
charge structure of a warhead, the driving time of fragments caused by detonation 
loading varies. Among the three types of fragments, natural fragments are 
subjected to detonation loading for the longest time, followed by semi-preformed 
fragments, and preformed fragments have the shortest driving time. As a result, 
this leads to significant differences in the initial velocity of the three types of 
fragments under the same detonation loading condition [1-3]. While fragment 
velocity is one of the key parameters for evaluating the lethality of fragments, 
accurate calculation of fragment velocities for different types of fragments is 
of significant guiding importance in effectively assessing the damage effects of 
fragments on military objectives or targets and in constructing a damage power 
field model of warheads.

Researchers have conducted extensive studies on fragment velocity and 
established many semi-empirical and semi-theoretical calculation formulas. 
The most typical one is the initial velocity formula of fragments based on the 
energy distribution proposed by Gurney [4], which assumes that all parts of the 
cylindrical shell rupture under the same stress and the resulting fragments have 
the same initial velocity along the axis of the cylindrical shell. This formula is 
applicable for the natural fragments generated by a cylindrical shell and can be 
expressed as:
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 are the initial casing velocity and the Gurney velocity, 
respectively. In addition, β represents the filling ratio, which is the ratio of the 
explosive mass to the casing mass.

In fact, due to the limited length of the shell, there is a rarefaction wave 
effect at both ends of the explosive charge, resulting in different velocities of 
fragments along the same axis. Typically, the maximum velocity is located at the 
axial center, while it decreases at the sides due to the influence of the rarefaction 
wave effects [5-10]. In order to accurately predict the velocities of fragments near 
both ends of the shell, researchers have developed modified formulas for the axial 
distribution of fragment velocities considering the effects of rarefaction waves at 
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both ends based on the Gurney formula. One approach involves modifying the 
filling ratio based on the Gurney formula. Charran [11] eliminated the velocity 
influence of the rarefaction waves at both ends by adjusting the filling ratio. This 
researcher proposed an innovative method based on the principle of effective 
charge, wherein a cone is removed from each end of the cylindrical charge, 
with the height of the initiation end cone equal to the diameter of the charge, 
and the height of the non-initiation end cone equal to the radius of the charge. 
Subsequently, a formula for calculating the velocity of fragments for the case of 
end-face initiation was established, and the formula takes the following form:
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, where x represents 

the distance from the initiation point at the end, r is the charge radius, and L is 
the charge length.

In addition, another method is to add a correction function in the Gurney 
formula. Zulkouski [12] conducted experimental research on the axial distribution 
characteristics of natural fragment velocities under an end-face initiation 
condition of an internal explosive loaded in a cylindrical metal shell. This study 
focused on the end-face rarefaction wave effect. By fitting the experimental data, 
a modified Gurney formula considering the rarefaction wave effect was proposed 
to predict the axial initial velocities of fragments. Felix [13] proposed a rapid 
calculation model for the axial distribution of natural fragment velocities in 
cylindrical shells initiated at the end-face point based on previous experimental 
data. Feng [14] and Huang [15] used pulse X-ray to test the axial distribution of 
natural fragment velocities for cylindrical shells under end-face initiation. By 
fitting the experimental data to the Gurney formula, an empirical formula for the 
axial distribution of natural fragment velocities for warheads was established. 
Based on this empirical formula, they further derived calculation formulas for 
warheads with center initiation, which is expressed as Equation 3.
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where d is the charge diameter.
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Furthermore, considering the variations in the structural shell, the 
characteristics of axial fragment velocity distribution will be altered [16-18]. 
For non-cylindrical shells, Guo et al. [16] utilized flash photography techniques 
to study the velocity distribution of fragments along the axis under end-face 
initiation. The results indicated that the rarefaction wave generated at both ends 
of the non-cylindrical shells were only related to the explosive diameter, not the 
filling ratio. Based on these conclusions, an “effective charge” equivalent model 
was proposed, and its parameters were determined by analyzing the velocity 
distribution of different charge cases. This equation can directly generate the 
velocity distribution of non-cylindrical casings initiated at one end without the 
need to experimentally determine unknown parameters.

Based on the above analysis, it can be concluded that current research 
mainly focuses on the axial distribution of natural fragment velocities generated 
in cylindrical or non-cylindrical shells, while there is still a lack of study on 
the axial distribution of fragment velocities from preformed shells. Taking into 
account that the energy losses caused by the escape of detonation gases from the 
preformed fragment gaps, utilizing the established empirical formula for natural 
fragment velocities to calculate velocities from preformed shells would lead to 
overestimation and is not suitable for solving preformed fragment velocities. 
Therefore, a correction factor is typically added to the Gurney formula to calculate 
preformed fragment velocities, with a common value of 0.9  [19]. However, 
this approximate value is not accurate, and is generally considered to provide 
a reasonable estimate for fragment velocities at the axial center, but produces 
large errors for fragment velocities at other positions.

In the present paper, we introduce a filling ratio correction function and 
propose a theoretical model of the axial distribution of fragment velocities in 
preformed fragmentation warheads initiated at the center, built upon the effective 
charge. The validation of the numerical simulation method was performed 
through ground static explosion test data from principle prototypes. Subsequently, 
the numerical simulation method was employed to investigate the influence 
of characteristic parameters, such as charge diameter, length-diameter ratio 
and filling ratio, on the axial distribution of fragment velocities. A filling ratio 
correction function was fitted to obtain the modified Gurney formula. Finally, 
the accuracy of the proposed formula was verified.
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2	 Computational Model

In response to the influence of the rarefaction wave effect on the axial distribution 
of fragment velocity under end point initiation, one reference [11] proposed the 
concept of the effective charge, achieving preliminary calculations of the axial 
distribution of fragment velocities by deliberately altering the filling ratios at 
the initiation end and the non-initiation end. However, the main issue with this 
approach is the lack of a theoretical basis and experimental data in support for 
the removal of explosive. Specifically, the typical problem was the near-zero 
mass of the effective charge at both ends after removal, resulting in zero fragment 
velocities at the ends calculated using the Gurney formula, which did not align 
with actual test data. Nonetheless, the idea of altering local filling ratios through 
segmented interior explosive cutting is highly meaningful. Inspired by this 
method, the axial velocity distribution of preformed fragments initiated at the 
center was investigated.

The theoretical model of the effective charge for a preformed fragment 
warhead initiated at the center is shown in Figure1. The warhead consists of 
charge, preformed fragments, front end plate, rear end plate and liner. The charge 
length is L, the charge diameter is d, the charge radius is r, the fragment thickness 
is t, and I is the initiation point. In practical applications, considering that the 
primary function of the end plates and the liner is to form a sealed cavity for 
the charge and the preformed fragments; thin-walled components are generally 
selected for them, with thicknesses of 5 and 1 mm, respectively. The explosive 
was divided into effective charge (highlighted in red) and ineffective charge 
(highlighted in gray). The effective charge is further divided into three areas: 
Region I, Region II, and Region III. 

For Region I, according to relevant experimental results [6, 20, 21], the 
maximum fragment velocity occurs at the axial center under center point 
initiation. As the warhead length is increased, the fragment velocity near the 
axial center is basically the same, i.e. the filling ratio and effective charge mass 
are the same, respectively. Therefore, there is no rarefaction wave effect in the 
central region. Meanwhile, based on cylindrical explosion tests, the expansion 
ratio of the cylindrical shell when gas leakage first occurs ranges from 1.6 to 
2.1, depending on the type of explosive filling. However, for a cylindrical shell 
made with preformed fragments, gas leakage occurs at an expansion ratio of 1.18 
to 1.26. This indicates that most of the energy escapes between the fragments 
without contributing to their acceleration. Consequently, Region I contains 
ineffective charge represented by the gray section, assuming an ineffective charge 
radius of c corresponding to an axial length of l. 
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For Regions II and III, the fragment velocity is completely symmetrical, 
and it is affected by both the rarefaction wave and the energy loss due to the 
gaps between fragments. The closer to the end, the greater the influence of the 
rarefaction wave on the fragments, resulting in a more pronounced velocity 
decrease. At the warhead ends, the fragment velocity is the lowest. Hence, the 
gray section of ineffective charge in the two end regions is larger than that in 
the intermediate Region I. Moreover, it is assumed that the ineffective charge 
radius varies linearly along the axis direction, with the end ineffective charge 
radius being “m”, and the axial length affected by the rarefaction wave leading 
to a velocity decrease being “a”.

d
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o

t
r

Front end

plate
Preformed

fragment
Effective
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Figure 1.	 Theoretical model of the effective charge

The filling ratios of the three regions are calculated below, where the filling 
ratio correction function for Region I is constant and expressed as:
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Due to the similarity between Region Ⅱ and Region Ⅲ, Region Ⅱ is taken as 
an example to calculate the filling ratio correction functions at both ends. Firstly, 
a coordinate system with the center of the charge as the origin O is established. 
Based on geometric relationships, the removed charge radius n at a distance x 
from point O satisfies the following Equation 5:
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Since the filling ratio is related to the charging structure, the correction 
function is the ratio of the charging mass after removal to the charging mass 
before removal. Therefore, the filling ratio correction function for Region Ⅱ is:
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Based on Equations 4, 6, and 7, it is evident that the filling ratio correction 
function for Region Ⅰ is only related to parameter c, while the filling ratio 
correction function for Region Ⅱ depends on parameters a, m, and c. Specifically, 
the correction function for the end of Region Ⅱ is solely related to parameter 
m. Hence, the following parameters are determined separately for a, m, and c.

For a centrally initiated explosive warhead, the characteristic parameters are 
the charge diameter d, length-diameter ratio δ, and filling ratio β, all of which 
may influence parameters a, m, and c. Therefore, a, m, and c are expressed in 
the following forms:

a = f(d, δ, β)� (8)

m = f(d, δ, β)� (9)

c = f(d, δ, β)� (10)

To determine the expressions of the above three parameters, a single-
factor control variable method is employed, utilizing numerical simulations to 
investigate the influence of the characteristic parameters on the three parameters, 
respectively.
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3	 Numerical Simulation 

The numerical simulation for the axial velocity of preformed fragments under 
explosive detonation loading were performed by the LS-DYNA dynamic 
simulation software. The calculation model for a preformed fragmentation 
warhead is shown in Figure 2, and consists of preformed fragments, charge, 
liner, front and rear end plates. The warhead diameter and length are 112 and 
210 mm, respectively, and the charge diameter and length are 100 and 200 mm, 
respectively. The round is configured with 20 axial rings, each containing 31 
fragments, for a total of 620 tungsten alloy fragments. The fragment size is 
10×10×5 mm. For modelling, the front and rear end plates, liner, and fragments 
of the warhead were represented using a single-point-integrated Lagrange 
hexahedral grid, and a Lagrange algorithm was used for the elements. The 
explosive was modelled using a Euler hexahedral grid, with a single-point Euler 
algorithm utilized for the elements. The three-dimensional fluid-solid coupling 
Multi-Material Arbitrary Lagrangian-Eulerian (MMALE) algorithm with single-
layer mesh was employed for coupling calculations. The air boundary was treated 
with a non-reflecting free boundary condition. The mesh size was set to 0.5 mm, 
and the modelling was performed in the cm-g-μs unit system.

Liner

Fragments

Charge

Rear end plate

Ring 1

Ring 20

Front end plate

Figure 2.	 Numerical calculation model 
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The explosive used in this study was HMX-based Plastic-Bonded Explosive 
(PBX), with the main components being 62% HMX, 18% Al, 9% binder, and 
11% other additives. The explosive behaviour was described using both the JWL 
state equation and the MAT_HIGH_EXPLOSIVE_BURN detonation model. 
The JWL state equation is an empirical equation determined from experimental 
data, which can accurately describe the pressure, energy, and volume expansion 
characteristics of detonation products during the detonation driving process. The 
expression of the JWL state equation is as follows:
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where V represents the specific volume of the detonation products and E denotes 
the initial internal energy of the explosive. A, B, R1, R2 and ω are constants that 
characterize the detonation properties of the explosive. The material parameters 
for the explosive are listed in Table 1 [22]. The fragments are made of tungsten 
alloy and modelled using the PLASTIC_KINEMATIC kinematic hardening 
model, with the corresponding parameters listed in Table 2 [23]. 

Table 1.	 HMX-based PBX explosive material parameters
ρ 

[kg·m‒3]
PCJ 

[GPa]
D 

[m·s‒1] A [GPa] B [GPa] R1 R2 ω

1818 31.86 8336 748.6 13.38 4.5 1.2 0.38

Table 2.	 Material parameters of tungsten alloy
ρ [kg·m‒3] E [GPa] G [GPa] μ σy [GPa] n

17.6 357 7.9 0.303 2 1

The front and rear end plates, as well as the liner, are all made of 2A12 
aluminum alloy, and are described using a combination of the Johnson-Cook 
constitutive model and the Gruneisen state equation, which can effectively capture 
the strain hardening, thermal softening, and damage accumulation effects of the 
materials. The fracture in the Johnson-Cook material model is characterized by 
the cumulative damage parameter D, and failure occurs when D = 1, resulting in 
a removal of the material element. The material parameters for 2A12 aluminum 
alloy are listed in Table 3 [24]. The expansion and fragmentation process of the 
preformed fragment under explosive driving is shown in Figure 3.
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Table 3.	 Material parameters of 2A12 aluminum alloy
Johnson-Cook constitutive model

ρ 
[kg·m‒3] E [GPa] μ A‘ 

[MPa]
B‘ 

[MPa] n C‘ m

2760 68.96 0.33 265 426 0.34 0.15 1.0
Gruneisen state equation

S C [m·s‒1] γ
1.338 5328 2.0

t = 0 μs t = 5 μs

t = 25 μs t = 50 μs
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t = 75 μs t = 100 μs
Figure 3.	 Numerical simulation results of the fragment driving process

As shown in Figure 3, it can be observed that the fragments near the central 
detonation experience radial expansion initially. In the axial direction, due to 
the influence of the rarefaction wave, the fragment velocity at the axial center 
is significantly higher than that of the fragments at both ends. The results of the 
axial distribution of fragment velocities obtained from the numerical simulation 
are shown in Table 4.

Table 4.	 Numerical simulation results of axial fragment velocity distribution

Ring Fragment 
velocity [m·s‒1] Ring Fragment 

velocity [m·s‒1]
1 915.9 11 1668.6
2 1056.1 12 1596.4
3 1189.5 13 1588.7
4 1259.8 14 1500.4
5 1386.8 15 1458.5
6 1456.0 16 1388.4
7 1502.0 17 1262.3
8 1589.2 18 1184.9
9 1595.6 19 1055.4
10 1668.6 20 916.8

4	 Experimental Verification

In order to verify the accuracy of numerical simulations, an experiment was 
performed to investigate the velocity distribution of preformed fragments. 
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A prototype was designed and fabricated based on the simulation model, and 
the total mass of the warhead was approximately 9.0 kg. Fragments were made 
of tungsten alloy having size 10×10×5 mm and arranged in a brick pattern on 
a 1 mm thick aluminum casing (density 2.7 g/cm3) using a resin hardener mix. 
Each fragment had a mass of 8.75 g. The charge used in the prototype was HMX-
based PBX high-energy explosive, with a charge mass of 2.63 kg and filling ratio 
of 0.484. In the warhead the detonator extended to the center position through 
a hollow tube to achieve center point initiation. The hollow tube was made of 
organic glass and had a diameter of only 10 mm, which had a negligible impact 
on the filling ratio. The prototype is shown in Figure 4.

A schematic diagram of the experimental layout is shown in Figure 5. 
Specifically, Q235A steel plates with an arc length of 20 m and a height of 4m 
were placed at a power radius of 6 m. Meridian and latitude lines were drawn on 
the target plates, with the vertical centerline of the target plate as the reference 
at 90°, and vertical lines were drawn every 3150 mm (30°) on the left and right 
sides. The latitude line was drawn every 210 mm (2°) on the horizontal centerline 
as the reference at 0°. Off targets were placed along the power radius at 1, 2, 3, 
4 and 5 m in three directions of 230°, 270° and 310°, respectively, which were 
used to measure the velocity attenuation coefficient of the fragments. High-speed 
photography was conducted at a frame rate of 10,000 frames per second (fps).

Ring1

Ring 20

Hollow tube

Tungsten alloy 

fragments

Figure 4.	 Preformed fragmentation warhead prototype
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R = 6 m

2 m

3 m

4 m

High-speed  camera

Q235A steel plate with

height of 4 m and

thickness of 6 mm

Warhead

0°

180°

230°

270°

310°

90°

30°

60°

120°

150°

Velocity measurment devices 

off target 

1 m

Figure 5.	 Schematic diagram of experimental layout

Through different off target tests, the time taken for fragments to reach 
various distances was measured. Subsequently, in accordance with GJB5232.3-
2004 “Test method for arena of tactical missile warhead performances - Part 
3: Determination of fragment initial velocity in fixed point explosion test”, 
the fragment velocity attenuation coefficient α was calculated, which can be 
expressed as:
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where i is target number, N = 5, Si is distance from the detonation center to the 
midpoint between adjacent targets, Vi is average velocity of fragments between 
adjacent target, which can be expressed respectively as:
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where Ri is the distance from the detonation center to the i-th target, Ti is the 
flight time of the fragment from the detonation center to the i-th target.
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The fragment velocity attenuation coefficient was calculated to be 0.022, 
as shown in Table 5. Figure 6 illustrates the detonation moments of the warhead 
prototype and the instants when fragments penetrated the steel plates at different 
axial positions. The moment when the warhead detonates and forms a firelight 
was taken as the starting time.

Table 5.	 Calculation results of the fragment attenuation coefficient
i Ri [m] Si [m] Ti [ms] Ti [m·s‒1] α
1 1 0.50 0.60 1666.67

0.022
2 2 1.50 1.25 1538.46
3 3 2.50 1.95 1428.57
4 4 3.50 2.70 1333.33
5 5 4.50 3.50 1250.00

(a) t = 0 ms, Initiation of warhead

(b) t = 3.8 ms, Rings 9~12 fragments

(c) t = 4.0 ms, Rings 6~15 fragments
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(d) t = 4.2 ms, Rings 5~16 fragments

(e) t =4.6 ms, Rings 4~17 fragments

(f) t = 5.2 ms, Rings 1~20 fragments
Figure 6.	 Light generated as fragments penetrated the steel plate at different 

axial positions

It can be seen from Figure 6 that the fragments at the axial center penetrate 
the target first, producing a bright flash of light at 3.8 ms. Subsequently, the 
luminous phenomenon gradually extends towards both ends, with the end 
fragments exhibiting the longest illumination time and the lowest velocity. The 
axial distribution of fragment velocities was obtained by converting the captured 
fireball generated after the fragments penetrated the steel plates using the high-
speed camera. Utilizing the previously obtained fragment velocity attenuation 
coefficient, the fragment velocity at typical axial positions was derived according 
to Equation 15, where vx is the instantaneous velocity of fragments at 3 m, which 
is approximately equal to the average velocity of fragments within 6 m.
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From this, it can be concluded that the fragment velocity of ring 9 to ring 12 
near the equatorial plane was the highest, at 1686.7 m/s, the fragment velocity of 
ring 6 and ring 15 was 1526.0 m/s, the fragment velocity of the ring 5 and ring 
16 was 1456.7 m/s, the fragment velocity of the ring 4 and ring 17 was 1323.3 
m/s, and the fragment velocity of ring 1 and ring 20 was 890.2 m/s. A comparison 
between the experimental results and the numerical results is shown in Figure 7.

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

F
ra

g
m

e
n
t 

v
el

o
ci

ty
[m

/s
]

Ring

Numerical results

Experiment results

Figure 7.	 Comparison between numerical simulation values and test values

From Figure 7, it became evident that the fragment velocity exhibits 
a symmetrical normal distribution relative to the equatorial plane. The maximum 
fragment velocity, defined as “vmax”, occurred near the axial center. The numerical 
simulation yielded a peak fragment velocity of 1668.6 m/s, while the experimental 
value recorded 1686.7 m/s, a deviation of approximately –1.1%. Due to the 
influence of the rarefaction wave, the end fragments experienced the lowest 
velocity, designated as “vmin”. The numerical simulation indicated a minimum 
fragment velocity of 915.9 m/s, while the experimental value was 890.2 m/s, 
resulting in an error of about 2.8%. The maximum error in other positions was 
‒4.1%, demonstrating a good agreement between the numerical results and the 
experimental values, thereby affirming the accuracy of the numerical simulation 
method in predicting the axial distribution of fragment velocity.
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5	 Results and Discussion

5.1	 Effects factor analysis

5.1.1	Effect of charge diameter
In order to investigate the impact of charge diameter on the axial distribution 
characteristics of fragment velocity, the charge diameter was considered as the 
sole variable while keeping the filling ratio and length-diameter ratio constant. 
Table 6 lists the structural parameters of a warhead with nine different charge 
diameters, along with the numerical simulation results of the maximum fragment 
velocity at the axial center and the minimum fragment velocity at both ends. 
Additionally, Figure 8 illustrates the trends of fragment velocity distribution 
under various working conditions.

Table 6.	 Structural parameters of a warhead with different charge diameters 
and maximum/minimum fragment velocities at axial positions

No.
Charge 
length L 

[mm]

Charge 
diameter d 

[mm]

Fragment 
thickness t 

[mm]
δ β

Fragment velocity
vmax 

[m·s‒1]
vmin 

[m·s‒1]
1 100 50 1.70

2 0.723

1852.3 1053.5
2 120 60 2.04 1849.2 1024.7
3 140 70 2.38 1864.2 1012.4
4 160 80 2.72 1854.7 1056.8
5 180 90 3.06 1862.3 1086.9
6 200 100 3.40 1871.3 1036.8
7 220 110 3.74 1852.9 1019.9
8 240 120 4.08 1859.8 1045.8
9 260 130 4.42 1842.3 1038.9
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Figure 8.	 Axial distribution of fragment velocity for different charge diameters

In Table 6 and Figure 8, it is noticeable that as the filling ratio and length-
diameter ratio remain constant and only the charge diameter is changed, the 
axial distribution of fragment velocity remains nearly identical. Moreover, the 
fragment velocities at different positions are essentially consistent. This indicates 
that when the warhead dimensions are proportionally increased or decreased, 
the axial distribution trend of the fragment velocity is the same, suggesting the 
absence of a scale effect.

5.1.2	Effect of length-diameter ratio
In order to study the effect of the length-diameter ratio on the axial distribution 
characteristics of fragment velocity, the length-diameter ratio was set as the sole 
variable while keeping the filling ratio and charge diameter constant. Table 7 
gives the structural parameters of a warhead with ten different length-diameter 
ratios, along with the numerical simulation results for the maximum fragment 
velocity at the axial center and the minimum fragment velocity at both ends. 
Furthermore, Figure 9 illustrates the trends of fragment velocity distribution at 
various axial positions under different working conditions.
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Table 7.	 Structural parameters of a warhead with different length-diameter 
ratios and the maximum/minimum fragment velocities at axial 
positions

No.
Charge 
length L 

[mm]

Charge 
diameter d 

[mm]

Fragment 
thickness t 

[mm]
δ β

Fragment velocity
vmax 

[m·s‒1]
vmin 

[m·s‒1]
1 60 100 5 0.6

0.497

951.2 698.5
2 80 100 5 0.8 1202.4 801.1
3 100 100 5 1.0 1321.4 899.4
4 120 100 5 1.2 1399.8 898.2
5 140 100 5 1.4 1448.7 905.6
6 160 100 5 1.6 1501.9 912.7
7 180 100 5 1.8 1550.7 908.6
8 200 100 5 2.0 1598.6 915.9
9 250 100 5 2.5 1609.2 920.7

10 300 100 5 3 1601.3 918.9
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Figure 9.	 Axial distribution of fragment velocity at different length-
diameter ratios

From Table 7 and Figure 9, it is evident that the length-diameter ratio has 
a significant impact on the distribution of fragment velocity along the axial 
direction. When δ is small, the fragment velocity distribution curve exhibits 
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a „︿„ shape. On the other hand, when δ is large, the curve presents a „︹„ shape. 
Moreover, with further increase of δ, the detonation becomes more complete, 
leading to a longer plateau period. This indicates that a higher proportion of 
fragments reach maximum velocity along the axial direction. Regarding the 
fragment velocity at the axial center, when δ ≤ 2, a larger length-diameter 
ratio results in a higher fragment velocity. However, when δ ≥ 2, the fragment 
velocity at the axial center remains relatively constant, allowing for the neglect 
of the influence of rarefaction waves at both ends on the velocity. This finding 
aligns with previous research [25] on the impact of δ on fragment velocity 
in the equatorial plane. As for the fragment velocity at the end faces, when 
δ ≥ 1, the velocity is basically relatively constant, indicating that the length-
diameter ratio has little effect. However, when δ < 1, smaller ratios lead to lower 
fragment velocities.

5.1.3	Effect of filling ratio
In order to figure out the impact of the filling ratio on the axial distribution 
characteristics of the fragment velocity, while the length-diameter ratio δ and 
the charge diameter d are kept unchanged; β was set as the only variable. Table 
8 provides the structural parameters of nine different warheads with varying 
filling ratios and the corresponding numerical simulation results for the maximum 
fragment velocity and the minimum fragment velocity at different axial positions. 
Figure 10 shows the axial distribution trend of fragment velocity under different 
working conditions.

Table 8.	 Structural parameters of projectiles with different filling ratios and 
maximum/minimum fragment velocities at axial positions

No.
Charge 
length L 

[mm]

Charge 
diameter d 

[mm]

Fragment 
thickness t 

[mm]
δ β

Fragment velocity
vmax 

[m·s‒1]
vmin 

[m·s‒1]
1 200 100 1.5

22

1.670 2495.1 1598.1
2 200 100 2 1.246 2285.2 1410.8
3 200 100 2.5 0.992 2112.7 1280.7
4 200 100 3 0.823 1975.6 1148.6
5 200 100 3.5 0.702 1847.8 1090.0
6 200 100 4 0.611 1758.3 1012.5
7 200 100 5 0.484 1600.7 915.9
8 200 100 6 0.400 1472.5 846.7
9 200 100 7 0.340 1375.1 790.2
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Figure 10. Axial distribution of fragment velocity at different filling ratios

It can be observed from Table 8 and Figure 10 that the trend of fragment 
velocity distribution at axial positions under different filling factors is basically 
the same. The distribution curve presents a „︹„ shape, and the length of the 
plateau period is basically the same. Simultaneously, the ratio between the 
minimum velocity at both ends and the maximum velocity at the equatorial plane 
ranges from 0.57 to 0.64, indicating that the filling ratio has little influence on 
the axial distribution of fragment velocity.

5.2	 Correction function and calculation formula

5.2.1	Calculation of c and m
Based on the numerical simulation results of axial fragment velocity distribution 
under different charge diameters, length-diameter ratios and filling ratios, 
combined with the theoretical model formulas, i.e. Equations 4 and 7, the 
relationships between c/r, m/r, and d, δ, β can be derived. The curves depicting 
these relationships are shown in Figures 11-13.
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It can be observed that c/r and m/r are independent of charge diameter and 
filling ratio, remaining constant, as shown in Figures 11 and 13. By contrast, 
Figure 12 shows that c/r and m/r are closely related to the length-diameter ratio. 
For c/r, when δ ≤ 2, c/r exhibits an approximately linear relationship with δ, with 
a fitting correlation coefficient of 0.983. When δ ≥ 2, c/r becomes constant. For 
m/r, when δ ≤ 1, the relationship between m/r and δ is approximately linear, with 
a fitting correlation coefficient of 0.9985. When δ ≥ 1, m/r is constant.

5.2.2	Calculation of a
According to the numerical simulation results of axial fragment velocity 
distribution under different charge diameters, length-diameter ratios and filling 
ratios, the relationship between a/L and d, δ, β can be obtained as shown in 
Figures 14-16.
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As can be seen from Figures 14 and 16, it is noticeable that a/L is independent 
of charge diameter and filling ratio, remaining constant. However, Figure 15 
reveals that when δ ≤ 1, the axial length a affected by rarefaction waves accounts 
for half of the total length L, that is that all fragments along the axial direction 
are influenced by rarefaction waves. When δ ≥ 1, a/L gradually decreases with an 
increasing length-diameter ratio and shows an approximately linear relationship 
with δ, with a correlation coefficient of 0.9915. When the value of δ reaches 2, 
the axial length a affected by rarefaction waves comprises 36% of the total length 
L. Therefore, for the design of fragment warhead structures, it is preferable to 
maximize the length-diameter ratio.

5.2.3	Calculation Formula and discussion
As seen from the results presented in Sections 5.2.1 and 5.2.2, it is evident that the 
length-diameter ratio has a significant influence on c, m, and a, while the influence 
of the filling ratio and the charge diameter can be neglected. Accordingly, the 
corresponding correction functions for the effective charge in different regions 
can be given as follows:
‒	 for Region I, the correction function expression is:
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‒	 for Region II or Region III, the correction function expression is:
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Applying the function F(x, δ) to the Gurney formula, the expression for the 
axial distribution of fragment velocity can be obtained:
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When using the above formula, initially calculate the axial length 
a influenced by rarefaction waves based on the given length-diameter ratio. 
Then, based on this, divide the charge part into Region I, Region II, and Region 
III, and subsequently apply the filling ratio correction functions of Region I, 
Region II, and Region III to the Gurney formula to obtain the axial fragment 
velocity distribution results when the center point of the preformed fragmentation 
warhead is initiated.

To assess the accuracy of the proposed formula, the axial fragment velocity 
distribution of the prototype was calculated by using the formula established in 
this paper. The results were then compared and analyzed against the experimental 
data. Additionally, the calculated values were compared with those obtained from 
the Gurney Equation 1 and the natural fragment velocity empirical Equations 2 
and 3. These results are shown in Figure 17.
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Figure 17.	 Comparison of the results of the calculated fragment velocities with 
experimental results, and values from existing formulas

Figure 17 demonstrates a strong agreement between the calculated 
values derived from the proposed formula and the experimental results, with 
a maximum deviation of only 4.65% at different positions. This indicates that 
the computational model established in this paper is accurate, enabling the 
determination of the axial fragment velocity distribution under different working 
conditions for a preformed fragmentation warhead initiated at the center. On 
the other hand, for the currently available natural fragment velocity empirical 
formula, the calculated values at different positions are consistently higher than 
the experimental results, especially at the two ends, with a difference of up to 
35.7%. The reason for this discrepancy is that the natural fragment velocity 
calculation model is based on the results of spontaneous fragmentation tests of 
the charge detonation in the shell. As mentioned earlier, the explosive radius of 
preformed fragmentation warheads is smaller than that of the shell‘s expansion 
radius, resulting in a lower impulse from the explosive detonation products and 
relatively lower fragment velocities. Moreover, closer to the ends, this difference 
is more significant. Therefore, when using the Gurney formula to calculate 
fragment velocities, the structural form of the warhead‘s fragments must be 
considered. In order to analyze further, the calculated fragment velocities at 
different axial positions were divided by the Gurney formula‘s calculated results, 
resulting in axial fragment velocity correction factors, as shown in Figure 18.
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Figure 18. Fragment velocity correction factors at different axial positions

As deduced from Figure 18, the correction factor is not a constant value, 
ranging from 0.515 to 0.923. The maximum value of 0.923 is found near the 
equatorial plane, and the minimum value of 0.515 is found at the edges. This 
further illustrates that when using the Gurney formula to calculate fragment 
velocities for a preformed fragmentation warhead, a coefficient value of 0.9 is 
reasonable for the equatorial plane. However, for other axial positions, especially 
those close to the ends, a coefficient value of 0.9 is evidently higher than the 
actual correction needed.

6	 Conclusions

This study investigated the axial distribution of fragment velocities for preformed 
fragmentation warheads initiated at the center, discussed the influence of 
rarefaction waves and energy loss in the gaps between preformed fragments on the 
axial velocity distribution of fragments, and introduced a filling ratio correction 
function based on the concept of effective charge. Consequently, a calculation 
formula for the axial fragment velocity distribution of a preformed fragmentation 
warhead was proposed. The effects of charge diameter, length-diameter ratio, and 
filling ratio on the fragment velocity distribution were systematically studied by 
a numerical simulation method, which was experimentally verified. The following 
main conclusions were drawn:
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♦	 There is energy loss in the gaps between the preformed fragments, which 
significantly impacts the axial fragment velocity distribution. Under the 
same working conditions, the axial velocity of the fragment is lower than 
that of a natural fragment.

♦	 Based on the concept of effective charge, the explosive charge can be divided 
into three regions. The central region (Region I) is affected by energy loss due 
to the fragment gaps, while the two end regions (Region II and Region III) 
are influenced by both rarefaction waves and energy loss from the fragment 
gaps. The filling ratio correction functions corresponding to each region are 
closely related to the length-diameter ratio and independent of the charge 
diameter and the filling ratio. As the length-diameter ratio increases, the 
ratio of the axial length affected by the rarefaction waves to the total length 
decreases. 

♦	 A calculation formula for the axial fragment velocity distribution of 
a preformed fragmentation warhead initiated at the center was established. 
Compared to experimental data, the formula yielded an error within 
4.65%, and showed higher accuracy when compared to existing formulas 
for calculating natural fragment velocities. The formula can be applied to 
calculate the axial velocities of preformed fragments under different charge 
diameters, length-diameter ratios, and filling ratios when initiated at the 
center. This can guide the design of preformed fragmentation warhead 
structures and assess their lethal performance.
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