Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of this paper is to compare three different methods of analysis of results of lightning impulse breakdown voltage measurements of solid materials such as insulating pressboard. These three methods are the series method, the step method and the up-and-down method which are applied to withstand voltage estimation commonly in high voltage engineering. To obtain the data needed for the analysis a series of experimental studies was carried out. It included studies of mineral oil and natural ester impregnating 1 mm of thick cellulose-based pressboard. In order to show the distribution of breakdown voltage the Weibull distribution was additionally applied in data analysis. The results were also assessed from the viewpoint of dielectric liquid used for impregnation. The studies carried out showed that series and step methods give comparable results opposite to the up-and-down method. The latest overstates the results for mineral oil impregnated pressboard and understates for natural ester impregnated pressboard when juxtaposing them with the rest of the methods applied. In addition, there is lack of possibility to assess the withstand voltage for the up-and-down method directly from the vector of random variable. It is possible only as a result of a specially developed equation which always arouses doubt. From the methods applied it seems that the step method can be a great substitution for the series method as intuitive, fast in application and limiting the number of samples in solid insulation material testing.
Czasopismo
Rocznik
Tom
Strony
693--709
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr., wzory
Twórcy
autor
- Lodz University of Technology, Institute of Electrical Power Engineering, Stefanowskiego 18/22, 90-924 Lodz, Poland
- Lodz University of Technology, Interdisciplinary Doctoral School, Żeromskiego 116, 90-924 Lodz, Poland
autor
- Lodz University of Technology, Institute of Electrical Power Engineering, Stefanowskiego 18/22, 90-924 Lodz, Poland
autor
- Lodz University of Technology, Institute of Electrical Power Engineering, Stefanowskiego 18/22, 90-924 Lodz, Poland
Bibliografia
- [1] Liu, Q., Wang, Z. D., & Perrot, F. (2009). Impulse breakdown voltages of ester-based transformer oils determined by using different test methods. IEEE Conference on Electrical Insulation and Dielectric Phenomena, 608-612. https://doi.org/10.1109/CEIDP.2009.5377741
- [2] Rozga, P. (2016). Streamer propagation in a non-uniform electric field under lightning impulse in short gaps insulated with natural ester and mineral oil. Bulletin of the Polish Academy of Sciences: Technical Science, 64(1), 171-179. https://doi.org/10.1515/bpasts-2016-0019
- [3] Rozga, P. (2016). Using the three-parameter Weibull distribution in assessment of threshold strength of pressboard impregnated by different liquid dielectrics. IET Science, Measurement & Technology, 10(6), 665-670. https://doi.org/10.1049/iet-smt.2016.0061
- [4] Aniserowicz, K. (2019). Analytical calculations of surges caused by direct lightning strike to underground intrusion detection system. Bulletin of the Polish Academy of Sciences: Technical Science, 67(2), 263-269. https://doi.org/10.24425/bpas.2019.128118
- [5] Mosiński, F. (1995). Metody statystyczne w technice wysokich napięć. Wydawnictwo Politechniki Łódzkiej. (in Polish)
- [6] Vibholm, S., & Thyregod, P. (1988). A study of the up-and-down method for non-normal distribution functions. IEEE Transactions on Electrical Insulation, 23(3), 357-364. https://doi.org/10.1109/14.2375
- [7] Rozga, P. (2019). Lightning strength of gas, liquid and solid insulation - experience form the laboratory tests. The International Conference on Power Transformers “Transformer’19”, 199-212.
- [8] Khaled, U., & Beroual, A. (2020). Lightning impulse breakdown voltage of synthetic and natural ester liquids-based Fe3O4, Al2O3 and SiO2 nanofluids. Alexandria Engineering Journal, 59(5), 3709-3713. https://doi.org/10.1016/j.aej.2020.06.025
- [9] Zhang, Q., You, H., Guo, C., Qin, Y., Ma, J., & Wen, T. (2016) Experimental research of dispersion of SF6 discharge breakdown voltage under lighting impulse. High Voltage Engineering, 42(11), 3415-3420.
- [10] Zhang, Y., Xie, S., Jiang, X., Ye, L., Zhang, Ch., Sun, P., Mu, Z., & Sima, W. (2019). Study on consistency of failure probability characteristics of oil-paper insulation under different impulse voltages. Proceedings of the 21st International Symposium on High Voltage Engineering, 1192-1206. https://doi.org/10.1007/978-3-030-31676-1_111
- [11] Cousineau, D. (2009). Fitting the three-parameter Weibull distribution: review and evaluation of existing and new methods. IEEE Transactions on Dielectrics and Electrical Insulation, 16(1), 281-288. https://doi.org/10.1109/TDEI.2009.4784578
- [12] European Standards. (2014). Electric strength of insulating materials - Test methods - Part 3: Additional requirements for 1,2/50 μs impulse tests (IEC 60243-3: 2014).
- [13] Witos, F., Opilski, Z., Szerszeń, G., & Setkiewicz, M. (2019). The 8AE-PD computer measurement system for registration and analysis of acoustic emission signals generated by partial discharges in oil power transformers. Metrology and Measurement Systems, 26(2), 403-418. https://doi.org/10.24425/mms.2019.128355
- [14] Shen, Z., Wang, F., Wang, Z., Li, J. (2021). A critical review of plant-based insulating fluids for transformer: 30 years of development. Renewable and Sustainable Energy Reviews, 41, 110783. https://doi.org/10.1016/j.rser.2021.110783
- [15] Liu, Q., & Wang, Z. D. (2013) Breakdown and withstand strengths of ester transformer liquids in a quasi-uniform field under impulse voltages. IEEE Transactions on Dielectrics and Electrical Insulation, 20(2), 571-579. https://doi.org/10.1109/TDEI.2013.6508761
- [16] Mohan Rao, U., Fofana, I., Beroual, A., Rozga, P., Pompili, M., Calcara, L., & Rapp, K. J. (2020). A review on pre-breakdown phenomena in ester fluids: Prepared by the international study group of IEEE DEIS liquid dielectrics technical committee. IEEE Transactions on Dielectrics and Electrical Insulation, 27(5), 1546-1560. https://doi.org/10.1109/TDEI.2020.008765
- [17] Dixon, W. J. (1965). The Up-and-Down method for small samples. Journal of the American Statistical Association, 60, 967-978.
- [18] Malska, W., & Mazur, D. (2017). Analiza wpływu prędkości wiatru na generację mocy na przykładzie farmy wiatrowej. Przegląd Elektrotechniczny, 93(4), 54-57 https://doi.org/10.15199/48.2017.04.14
- [19] Kalbfleisch, J. D., & Prentice, R. L. (2002). The statistical analysis of failure time data (2nd ed.). J. Wiley. https://doi.org/10.1002/9781118032985
- [20] De Haan, L., & Ferreira, A. (2007). Extreme value theory: an introduction. Springer Science & Business Media. https://doi.org/10.1007/0-387-34471-3
- [21] Chmura, L., Morshuis, P. H. F., Smit, J. J., & Janssen, A. (2015). Life-data analysis for condition assessment of high-voltage assets. IEEE Electrical Insulation Magazine, 31(5), 20-25. https://doi.org/10.1109/MEI.2015.7214443
- [22] Cargill. (2018). https://www.cargill.com/bioindustrial/fr3-fluid/fr3-fluid-technical-details
- [23] Nynas. (20210). Nytro Taurus (IEC 60296) Ed. 5 - Standard Grade. https://www.nynas.com/en/product-areas/transformer-oils/oils/nytro-taurus/
- [24] Rozga P., Beroual A., Przybylek P., Jaroszewski M., & Strzelecki K. (2020). A review on synthetic ester liquids for transformer applications. Energies, 13(23), 6429. https://doi.org/10.3390/en13236429
- [25] European Standards. (2011). Power transformers - Part 1: General (IEC 60076-1:2011).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-06252f60-7d74-43bd-b9df-b20d7c362d6e