PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of the two-stage thermal disintegration and anaerobic digestion of sewage sludge on the COD fractions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The research presents the changes in chemical oxygen demand (COD) fractions during the two-stage thermal disintegration and anaerobic digestion (AD) of sewage sludge in municipal wastewater treatment plant (WWTP). Four COD fractions have been separated taking into account the solubility of substrates and their susceptibility to biodegradation: inert soluble organic matter SI, readily biodegradable substrate SS, slowly biodegradable substrates XS and inert particulate organic material XI. The results showed that readily biodegradable substrates SS (46.8% of total COD) and slowly biodegradable substrates XS (36.1% of total COD) were dominant in the raw sludge effluents. In sewage effluents after two-stage thermal disintegration, the percentage of SS fraction increased to 90% of total COD and percentage of XS fraction decreased to 8% of total COD. After AD, percentage of SS fraction in total COD decreased to 64%, whereas the percentage of other fractions in effluents increased.
Rocznik
Strony
130--135
Opis fizyczny
Bibliogr. 43 poz., rys., tab.
Twórcy
autor
  • University of Science and Technology, Faculty of Chemical Technology and Engineering, Seminaryjna St. 3, 85-326 Bydgoszcz, Poland
autor
  • University of Science and Technology, Faculty of Chemical Technology and Engineering, Seminaryjna St. 3, 85-326 Bydgoszcz, Poland
autor
  • University of Science and Technology, Faculty of Chemical Technology and Engineering, Seminaryjna St. 3, 85-326 Bydgoszcz, Poland
Bibliografia
  • 1. Climent, M., Ferrerb, I., del Mar Baezac, M., Artola, A., Vázquezb, F. & Font, X. (2007). Effects of thermal and mechanical pretreatments of secondary sludge on biogas production under thermophilic conditions. Chem. Eng. J. 133, 335–342. DOI: 10.1016/j.cej.2007.02.020.
  • 2. Zhang, H. (2010). Sludge treatment to increase biogas production. Trita-LWR Degree Project 10–20, Stockholm, Sweden.
  • 3. Foladori, P., Andreottola, G. & Ziglio, G. (2010). Sludge reduction technologies in wastewater treatment plants. IWA Publishing, London.
  • 4. Bougrier, C., Carrere, H. & Delgenes, J. (2005). Solubilisation of waste-activated sludge by ultrasonic treatment. Chem. Eng. J. 106, 163–169. DOI: 10.1016/j.cej.2004.11.013.
  • 5. Zhang, P., Zhang, G. & Wang, W. (2007). Ultrasonic treatment of biological sludge: Floc disintegration, cell lysis and inactivation. Bioresource Technol. 98, 207–210. DOI: 10.1016/j.biortech.2005.12.002.
  • 6. Zhang, G., Yang, J., Liu, H. & Zhang, J. (2009). Sludge ozonation: Disintegration, supernatant changes and mechanisms. Bioresource Technol. 100, 1505–1509. DOI: 10.1016/j.biortech.2008.08.041.
  • 7. Neyens, E. & Baeyens, J. (2003). A review of thermal sludge pre-treatment processes to improve dewaterability. J. Hazard. Mater. B98, 51–67. DOI: 10.1016/S0304-3894(02)00320-5.
  • 8. Pilli, S., Yan, S., Tyagi, R.D. & Surampalli, R.Y. (2015). Thermal pretreatment of sewage sludge to enhance anaerobic digestion: A review. Crit. Rev. Environ. Sci. Technol. 45(6), 669–702. DOI: 10.1080/10643389.2013.876527.
  • 9. Ferrer, I., Ponsá, S., Vázquez, F. & Font, X. (2008). Increasing biogas production by thermal (70°C) sludge pre-treatment prior to thermophilic anaerobic digestion. Biochem. Eng. J. 42, 186–192. DOI: 10.1016/j.bej.2008.06.020.
  • 10. Appels, L., Houtmeyers, S., Degrève, J., Impe, J.V. & Dewil, R. (2013). Influence of microwave pre-treatment on sludge solubilization and pilot scale semi-continuous anaerobic digestion. Bioresource Technol. 128, 598–603. DOI: 10.1016/j.biortech.2012.11.007.
  • 11. Tyagi, V. & Lo, S. (2013). Microwave irradiation: A sustainable way for sludge treatment and resource recovery. Renew. Sust. Energ. Rev. 18, 288–305. DOI: 10.1016/j.rser.2012.10.032.
  • 12. Li, H., Li, C., Liu, W. & Zou, S. (2012). Optimized alkaline pretreatment of sludge before anaerobic digestion. Bioresource Technol. 123, 189–194. DOI: 10.1016/j.biortech.2012.08.017.
  • 13. Zhang, Y., Zhang, P. Zhang, G. Ma, W. Wu, H. & Ma, B. (2012). Sewage sludge disintegration by combined treatment of alkaline + high pressure homogenization. Bioresource Technol. 123, 514–519. DOI: 10.1016/j.biortech.2012.07.078.
  • 14. Eskicioglu, C., Kennedy, K. & Ronald, D.R. (2006). Characterization of soluble organic matter of waste activated sludge before and after thermal pretreatment. Water Res. 40, 3725–3736. DOI: 10.1016/j.watres.2006.08.017.
  • 15. Cui, R. & Jahng, D. (2006). Enhanced methane production from anaerobic digestion of disintegrated and deproteinized excess sludge. Biotechnol. Lett. 28, 531–538. DOI: 10.1007/s10529-006-0012-9.
  • 16. Carlson, M., Lagerkvist, A. & Morgan-Sagastume, F. (2012). The effect of substrate pre-treatment on anaerobic digestion system: A review. Waste Management. 32, 1634–1650. DOI: 10.1016/j.wasman.2012.04.016.
  • 17. Martínez, E., Rosas, J., Morán, A. & Gómez, X. (2015). Effect of ultrasound pretreatment on sludge digestion and dewatering characteristics: Application of particle size analysis. Water 7(11), 6483–6495. DOI: 10.3390/w7116483.
  • 18. Wu, Q.L., Guo, W.Q., Zheng, H.S., Luo, H.Ch., Feng, X.Ch., Yin, R.L. & Ren, N.Q. (2016). Enhancement of volatile fatty acid production by co-fermentation of food waste and excess sludge without pH control: The mechanism and microbial community analyses. Bioresource Technol. 216, 653–660. DOI: 10.1016/j.biortech.2016.06.006.
  • 19. Huan, L., Yiying, J., Bux Mahar, R., Zhiyu, W. & Yongfeng, N. (2009). Effects of ultrasonic disintegration on sludge microbial activity and dewaterability. J. Hazard. Mater. 161, 1421–1426. DOI: 10.1016/j.jhazmat.2008.04.113.
  • 20. Xiao, B.Y. & Liu, J.X. (2009). Effects of various pretreatments on biohydrogen production from sewage sludge. Chin. Sci. Bull. 54, 2038–2044. DOI: 10.1007/s11434-009-0100-z.
  • 21. Jung, Y., Ko, H., Jung, B. & Sung, N. (2011). Application of ultrasonic system for enhanced sewage sludge disintegration: A comparative study of Single- and dual-frequency. KSCE J. Civ. Eng. 15, 793–797. DOI: 10.1007/s12205-011-0832-6.
  • 22. Negral, L., Marañón, E., Castrillón, L. & Fernández-Nava, Y. (2015). Differences in soluble COD and ammonium when applying ultrasound to primary, secondary and mixed sludge. Water Sci. Technol. 71, 1398–406. DOI: 10.2166/wst.2015.113.
  • 23. Jin, L., Zhang, G. & Zheng, X. (2015). Effects of different sludge disintegration methods on sludge moisture distribution and dewatering performance. J. Environ. Sci. 28, 22–28. DOI: 10.1016/j.jes.2014.06.040.
  • 24. Penaud, V., Delgenès, J.P. & Moletta, R. (1999). Thermochemical pretreatment of a microbial biomass: influence of sodium hydroxide addition on solubilization and anaerobic biodegradability. Enzyme Microb. Tech. 25, 258–263. DOI: 10.1016/S0141-0229(99)00037-X.
  • 25. Sperling, M. (2007). Basic principles of wastewater treatment. IWA Publishing, Vol. 2, London.
  • 26. Zawilski, M. & Brzezińska, A. (2009). Variability of COD and TKN fractions of combined wastewater. Pol. J. Environ. Stud. 18, 501–505.
  • 27. Henze, M., Gujer, W., Mino, T. & van Loosdrecht, M. (2007). Activated sludge models ASM1, ASM2, ASM2d, ASM3. IWA Tasc Group on Mathematical Modelling for Design and Operation of Biological Wastewater Treatment, London.
  • 28. Dulekgurgen, E., Doğruel, S., Karahan, Ö. & Orhon, D. (2006). Size distribution of wastewater COD fractions as an index for biodegradability. Water Res. 40, 273–282. DOI: 10.1016/j.watres.2005.10.032.
  • 29. Hayet, C., Saida, B.A., Touhami, Y. & Hedi, S. (2016). Study of biodegradability for municipal and industrial Tunisian wastewater by respirometric technique and batch reactor test. Sustain. Environ. Res. 26, 55–62. DOI: 10.1016/j.serj.2015.11.001.
  • 30. Junoh, H., Yip, CH. & Kumaran, P. (2016). Effect on Ca(OH)2 pretreatment to enhance biogas production of organic food waste, International Conference on Advances in Renewable Energy and Technologies (ICARET 2016), IOP Publishing, IOP Conf. Series: Earth and Environmental Science, Vol. 32. Putrajaya, Malaysia. DOI: 10.1088/1755-1315/32/1/012013.
  • 31. Sadecka, Z., Jędrczak, A. & Płuciennik-Koropczuk, E. (2013). COD Fractions in Sewage Flowing into Polish Sewage Treatment Plants. Chem. Biochem. Eng. Q. 27(2), 185–195.
  • 32. Wentzel, M.C., Mbewe, A., Lakay, M.T. & Ekama, G.A. (1999). Batch test for characterisation of the carbonaceous materials in municipal wastewaters. Water SA. 25(3), 327–335.
  • 33. Henze, M., Gujer, W., Mino, T. & von Loosdrecht, M. (2000). Activated sludge models ASM1, ASM2, ASM2d and ASM3. IWA Task Group on Mathematical Modelling for Design and Operation of Biological Wastewater Treatment; IWA Scientific and Technical Reports, London.
  • 34. Wintle, B. (2008). The use of activated sludge model No. 3 to model an activated sludge unit at an industrial wastewater treatment facility. Master of Science. Environmental Engineering Oklahoma State University Stillwater, Oklahoma.
  • 35. Specialized Committees ATV-DVWK. ATV-DVWK – A131P. (2000). Dimensioning of biological activated treatment plant (in Polish). Seidel-Przywecki. Warsaw.
  • 36. Appels, L., Degrèvea, J., Bruggen, B., Impe, J. & Dewil R. (2010). Influence of low temperature thermal pre-treatment on sludge solubilisation, heavy metal release and anaerobic digestion, Bioresource Technol. 101(15), 5743–5748. DOI: 10.1016/j.biortech.2010.02.068.
  • 37. Farno, E., Baudez, J.C., Parthasarathy, R. & Esshtiaghi, N. (2016). Impact of thermal treatment on the rheological properties and composition of waste activates sludge: COD solubilisation as a footprint of rheological changes. Chem. Eng. J. 295, 39–48. DOI: 10.1016/j.cej.2016.03.022.
  • 38. Myszograj, S. (2013). Effects of the solubilisation of the COD of municipal waste in thermal disintegration. Arch. Environ. Protect. 39(2), 57–67. DOI: 10.2478/aep-2013-0014.
  • 39. Aboulfoth, A.M., El Gohary, E.H. & El Monayeri, O.D. (2015). Effect of thermal pretreatment on the solubilization of organic matters in a mixture of primary and waste activated sludge. J. Urban Environ. Eng. 9(1), 82–88. DOI: 10.4090/juee.2015.v9n1.082088.
  • 40. Henze, M., Gujer, W., Mino, T., Matsuo, T., Wentzel, M.C., Marais, G.v.R. & Van Loosdrecht, M.C. (1999). Activated sludge model No2D, ASM2D. Water Sci. Technol. 39(1), 165–182. DOI: 10.1016/S0273-1223(98)00829-4.
  • 41. Kumi, P.J., Henley, A., Shana, A., Wilson, W. & Esteves, S.R. (2016). Volatile fatty acids platform from thermally hydrolysed secondary sewage sludge enhanced through recovered micronutrients from digested sludge. Water Res. 100, 267–276. DOI: 10.1016/j.watres.2016.05.030.
  • 42. Mikosz, J. (2015). Determination of permissible industrial pollution load at a municipal wastewater treatment plant. Int. J. Environ. Sci. Technol. 12, 827–836. DOI: 10.1007/s13762-013-0472-0.
  • 43. Penn, M.R., Pauer, J.J. & Mihelcic, J.R. (2009). Biochemical oxygen demand. Environ. Ecol. Chem. 2, 278–297.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0624deab-7bdd-498e-9d4b-b246bad25036
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.