
JACSM 2014, Vol. 6, No. 2, pp. 147 -

147

MONADIC TREE PRINT

Konrad Grzanek

IT Institute, Academy of Science, Łódź, Poland
kgrzanek@spoleczna.pl, kongra@gmail.com

Abstract
Directed acyclic graphs and trees in particular belong to the most extensively
used data structures. Visualizing them properly is a key to a success when
developing complex algorithms that make use of them. Textual visualizations a
la UNIX tree command is essential when the urge is to deal with large trees.
Our aim was to design a library that would exploit this approach and to make an
implementation of it for a purely functional programming language. The library
uses monads to print directly into an output stream or to generate immutable
Strings. This paper gives a detailed overview of the solution.

Key words: Functional programming, monads, Haskell

1 Introduction

Textual presentation of data structures is invariably one of the most effec-
tive ways to visualize them. This statement becomes apparent when it comes
to presentation of large data structures. The ability to display textual content
and working on the presentation results with automated text-processing tools
sometimes makes this way of visualizing much more appealing to the end-
user than displaying using GUI views. The data structure that is especially
susceptible to this approach is tree, or – even more generally – DAG (Directed
Acyclic Graph).

This state of affairs is reflected in such programs as UNIX tree (see [7])
command. Figure 1 shows a directory structure displayed in a command line
after using this tool:

157
10.1515/jacsm-2015-0005

148

Monadic Tree Print

This paper aims to present our realization1 of tree-like visualization library for
Haskell ([1], [2]), a purely functional ([3]) and statically typed programming
language. The library possesses the following properties:
 Generates representations of arbitrary DAGs.
 Writes to any monad (for a detailed explanation of what monads are,

please see [4]), including IO. This also means it writes to normal Haskel
Strings (lists of Char) via Identity monad.

 Extensively uses Haskell type-system to verify correctness of the usage
scenario.

2 Abstraction

A somewhat central point in the design of the library is the ShowM type-
class2. It expresses a relation between the objects (nodes) s of the visualized
data structure, the monad m in which the print process takes place and the op-
tions o for the process.

class (Monad m) ⇒ ShowM m o s where
showM :: o → s → m ShowS

1 To access GitHub repository for the project, please visit [12].
2 We assume the following Haskell extensions in all the listings: Trustworthy, RankNTypes,

FlexibleContexts, MultiParamTypeClasses.

Figure 1. A directory structure visualized using tree command in Ubuntu 12.04.

149

Grzanek K.

One important thing is worth mentioning here. All abstractions and im-
plementations described here use a ShowS type (as documented in [8]) rather
than raw String ([Char]). The type is declared as follows:

type ShowS = String → String

According to the documentation the ShowS functions return a function that

prepends the output String to an existing String. This allows constant-time
concatenation of results using function composition ([11]). We must remem-
ber that the default lists concatenation operator defined as follows (in [10]):

(++) :: [a] → [a] → [a]
(++) [] ys = ys
(++) (x:xs) ys = x : xs ++ ys

doesn't offer a constant time behavior here. For more information, please read
the article on difference lists as functions [9], which states: “Whether this kind
of difference list is more efficient than another list representations depends on
usage patterns. If an algorithm builds a list by concatenating smaller lists,
which are themselves built by concatenating still smaller lists, then use of dif-
ference lists can improve performance by effectively "flattening" the list build-
ing computations.”. In our case we have exactly the kinds of operations that
may be sped up using ShowS.

Another element of the abstraction is the Printer, a function that converts
ShowS into a target monadic inter-process representation a:

type Printer m a = Monad m ⇒ ShowS → m a

The inter-process representations of misc. textual tree elements are com-

bined into larger ones by a Merger, that is effectively a monadic catamor-
phism on lists:

type Merger m a = Monad m ⇒ [a] → m a

Finally, there is also an implementation ADT (Algebraic Data Type) that

holds printer and the merger. Impl is de facto the way of expressing what kind
of result we expect from the process:

data Impl m a = Impl !(Printer m a) !(Merger m a)

150

Monadic Tree Print

3 Abstract Configuration

The configuration of the process must give, in the first place, the answer to
the question, what the nature of the visualized tree really is. We introduce
Adjs (fr. adjacents – adjacent element) type that describes ways of generating
sub-elements of a tree node:

type Adjs m o s = Monad m ⇒ o → s → m [s]

There is also a compound configuration ADT:

data Conf m a o s =
Conf
{
 impl :: !(Impl m a)
, adjs :: !(Adjs m o s)
, maxDepth :: !(Maybe Int)
, opts :: !o
}

that gathers a concrete implementation, the description of a tree (adjs), op-
tions (opts) as well as a depth constraint – maxDepth. The latter may be unde-
fined (Nothing constructor of Maybe monad).

4 Implementations

There are two implementations in the library: the one that prints to the IO
monad and the other, that generates ShowS.

IO implementation (named io) prints by evaluating a ShowS and compos-
ing the evaluator with putStr :: String → IO (). Its merger does nothing, be-
cause the generated pieces of textual representation are being put immediately
into the output stream through putStr and so there is no accumulation of par-
tial results that would have to be merged.

io :: Impl IO ()
io = Impl (putStr ◦ evalShowS) (const $ return ())

where evalShowS s = s ""

String-generating implementation is actually abstract and it is capable to
be used in any monad. Its printer only returns a ShowS in a monad m, and the
merger returns the result of a composition of ShowS:

151

Grzanek K.

str :: Monad m ⇒ Impl m ShowS
str = Impl return (return ◦ compose)

The most obvious concrete use of this abstract implementation is the str

implementation, that simply exploits the Identity monad to generate ShowS in
the pure (side-effect free) way:

istr :: Impl Identity ShowS
istr = str

5 Realization

This section gives a detailed description of how all the elements described
earlier come together to form an effective visualization. Listings to be pre-
sented later depend on the following import clauses:

import Control .Monad (forM)
import Control .Monad .Identity (Identity)
import Data.Maybe (fromMaybe)
import Kask .Data.Function (compose, rcompose)
import Kask .Data.List (markLast)

Functions compose and rcompose create compositions of functions passed

in sequential orders. They are defined as follows in a separate utilities module
Kask.Data.Function in kask-base project3:

-- | Composes functions passed in a list. Uses foldl.
-- compose [f1, f2, ..., fn] = f1 . f2 fn
compose :: [a → a] → a → a
compose = foldl (.) id
{-# INLINE compose #-}

-- | Composes functions passed in a list in a reversed order.
-- Uses foldl. compose [f1, f2, ..., fn] = fn f2 . f1
rcompose :: [a → a] → a → a
rcompose = foldl (flip (.)) id
{-# INLINE rcompose #-}

The actual implementation of the monadic printing process was done in a

printImpl procedure, as given below:

3 Implemented by author.

152

Monadic Tree Print

printImpl :: (ShowM m o s) ⇒
 Printer m a
 → Merger m a
 → Adjs m o s
 → o
 → Int
 → s → Int → [Bool] → m a
printImpl printer merger adjs' opts' mdepth s level lastChildInfos = do

First, the ShowS form of the current node s is being generated using

showM procedure:

 s' ← showM opts' s

Then, a target representation is prepared. During this stage all necessary

indentation elements are prepended:

 let repr = if level == 0
 then compose [s', eol]
 else compose [genIndent lastChildInfos, s', eol]

Printer takes the ShowS representation and converts it into an internal, in-

process monadic form:

 r ← printer repr

After that a decision of making the recursive step is being made based on

the maximal depth parameter and the result of adjacent nodes generation:

 rs ← if level == mdepth
 then return [] -- Do not recurse lower than maxDepth'
 else do
 let nextLevel = level + 1
 children ← adjs' opts' s
 forM (zip children (markLast children)) $ \(child, isLast) →
 printImpl printer merger adjs' opts' mdepth
 child nextLevel (isLast:lastChildInfos)

Finally, the merger is used to reduce the partial results (adjacent elements'

representations) into the target:

 merger (r:rs)

153

Grzanek K.

Special state variable lastChildInfos is a sequence that allows tracking
whether or not a node is a last child of its parent. The information is essential
for generating the textual “ruler” lines in the visualization properly. The func-
tion markLast used in the algorithm above is defined in Kask.Data.List (again
in kask-base) as follows:

-- | Takes a list [e0, e1, ..., en] and returns [False, False, ..., True] or
-- [False, False, ...] if the argument is infinite.
markLast :: [a] → [Bool]
markLast [] = []
markLast (_ : xs)
 | null xs = [True]
 | otherwise = False : markLast xs

Lastly, the procedure named genIndent is responsible for generating a

proper indentation for a particular node:

genIndent :: [Bool] → ShowS
genIndent [] = error "Empty genIndent argument !!!"
genIndent (isLast : lastChildInfos) = compose [prefix , suffix]
 where
 suffix = if isLast then forLastChild else forChild
 prefix = rcompose (map indentSymbol (init lastChildInfos))
 indentSymbol True = emptyIndent
 indentSymbol False = indent
{-# INLINE genIndent #-}

It uses the following symbols, all of type ShowS defined as follows:

indent = showString "│ "
emptyIndent = showString " "
forChild = showString "├── "
forLastChild = showString "└── "
eol = showString "\n"

6 Interface

This is the most important part of the library from the perspective of its us-
er. Our solution offers its content via the following interface:

154

Monadic Tree Print

module Data.Tree.Print
(
-- * Abstraction
 ShowM
, showM
, Printer
, Merger
, Adjs
, Impl (..)

-- * Implementations
, io
, str
, istr

-- * Use
, Conf (..)
, printTree
)

As it can be observed, we do not restrict any of its usage scenarios to the

one defined and described above. In particular, a potential user may feel free
to define his own Impls (implementations), with custom Printers and Mergers.

Printing process starts by calling the following procedure that actually del-
egates all interesting work to printImpl, described above.

printTree :: (ShowM m o s) ⇒ Conf m a o s → s → ma
printTree

Conf { impl = Impl printer merger
 , adjs = adjs
 , maxDepth = maxDepth
 , opts = opts } s =

printImpl printer merger adjs opts (mdepth − 1) s 0 [True]
where
-- When no max depth specified, we use maxBound :: Int
mdepth = fromMaybe maxBound maxDepth
mdepth = if mdepth < 1 then 1 else mdepth

{-# INLINE printTree #-}

155

Grzanek K.

7 Use cases

Testing for performance and for behavior under a heavy stress is crucial
when talking about properties of an effective library. We decided to lay our
tests on natural numbers generation. Our adjacency function looks as follows:

intree :: Monad m ⇒ () → N → m [N]
intree _ i = return $ take m $ iterate (1+) (10 * I)

We generate 8 natural numbers on each level, and for any of them consec-

utive 8 children exist, with 8 children each, etc. down to the level 8 in depth.
We make an attempt to visualize this hierarchy of numbers. The tree contains
sum $ map (8↑) [0 .. 7], that is 2,396,745 nodes. Generating a representation
of this structure takes under 1 minute on a commodity laptop machine with
AMD E-450 CPU and 4GBs of RAM on board. As can be seen in the follow-
ing Figure 2, the actual memory usage is abysmal4:

4 Using io implementation. In the case of istr (str) the memory consumption might be signifi-

cant.

Figure 2. Running textual tree visualization process.

156

Monadic Tree Print

The generated file is over 130 MB in size, but it's the content that matters
(Figure 3):

The monadic tree-print library was developed to help visualize a structure

of Rete [5], [6] graph in a Haskell implementation of this great knowledge
storing and inferring algorithm. Works on this project are in progress now,
and so the presentation of its details are beyond the scope of this paper.

References

1. Peyton Jones S., 1987, The Implementation of Functional Programming Languag-
es, Prentice-Hall International Series in Computer Science. Prentice Hall Interna-
tional (UK) Ltd

2. Lipovaca M., 2011, Learn You a Haskell for Great Good!: A Beginner’s Guide,
No Starch Press; 1st edition (April 21, 2011)

3. Bird R., Wadler R., 1988, Introduction to Functional Programming. Series in
Computer Science (Editor: C.A.R. Hoare), Prentice Hall International (UK) Ltd

4. Awodey S., 2010, Category Theory, Second Edition, Oxford University Press

Figure 3. The beginning of generated tree representation.

The generated file is over 130 MB in size, but it's the content that matters
(Figure 3):

The monadic tree-print library was developed to help visualize a structure

of Rete [5], [6] graph in a Haskell implementation of this great knowledge
storing and inferring algorithm. Works on this project are in progress now,
and so the presentation of its details are beyond the scope of this paper.

References

1. Peyton Jones S., 1987, The Implementation of Functional Programming Languag-
es, Prentice-Hall International Series in Computer Science. Prentice Hall Interna-
tional (UK) Ltd

2. Lipovaca M., 2011, Learn You a Haskell for Great Good!: A Beginner’s Guide,
No Starch Press; 1st edition (April 21, 2011)

3. Bird R., Wadler R., 1988, Introduction to Functional Programming. Series in
Computer Science (Editor: C.A.R. Hoare), Prentice Hall International (UK) Ltd

4. Awodey S., 2010, Category Theory, Second Edition, Oxford University Press

Figure 3. The beginning of generated tree representation.

The generated file is over 130 MB in size, but it's the content that matters
(Figure 3):

The monadic tree-print library was developed to help visualize a structure

of Rete [5], [6] graph in a Haskell implementation of this great knowledge
storing and inferring algorithm. Works on this project are in progress now,
and so the presentation of its details are beyond the scope of this paper.

References

1. Peyton Jones S., 1987, The Implementation of Functional Programming Languag-
es, Prentice-Hall International Series in Computer Science. Prentice Hall Interna-
tional (UK) Ltd

2. Lipovaca M., 2011, Learn You a Haskell for Great Good!: A Beginner’s Guide,
No Starch Press; 1st edition (April 21, 2011)

3. Bird R., Wadler R., 1988, Introduction to Functional Programming. Series in
Computer Science (Editor: C.A.R. Hoare), Prentice Hall International (UK) Ltd

4. Awodey S., 2010, Category Theory, Second Edition, Oxford University Press

Figure 3. The beginning of generated tree representation.

157

Grzanek K.

5. Forgy Ch., 1979, On the efficient implementation of production systems, Depart-
ment of Computer Science, Carnegie-Mellon University

6. Doorenbos R. B., 1995, Production Matching for Large Learning Systems, PhD
Thesis, Computer Science Department, Carnegie Mellon University Pittsburgh,
PA

7. tree (1) - Linux man page, 2015, http://linux.die.net/man/1/tree
8. Hackage, 2015, ShowS documentation, http://hackage.haskell.org/package/base-

4.7.0.2/docs/Prelude.html#t:ShowS
9. Haskell Wiki, 2015, Difference lists, https://wiki.haskell.org/Difference_list
10. Hackage, 2015, (++) operator source code,

http://hackage.haskell.org/package/base-4.7.0.2/docs/src/GHC-
Base.html#%2B%2B

11. Stackoverflow, 2013, What is the showS trick in Haskell?,
http://stackoverflow.com/questions/9197913/what-is-the-shows-trick-in-haskell

12. GitHub, 2015, tree-print repository, https://github.com/kongra/treeprint

