PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of shot peening on the stress state in the adhesive layer and the load capacity of adhesive joints

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ pneumokulkowania na stan naprężeń w spoinie klejowej i nośność połączeń klejowych
Języki publikacji
EN
Abstrakty
EN
The aim of the article was to determine the influence of shot peening of the outer surface of the overlap on the stress state in the adhesive layer and the load capacity of single lap adhesive joints made of EN AW-2024-T3 aluminum alloy. Experimental investigations and numerical simulations were carried out. According to the results of experimental analyses, shot peening with balls with a diameter of 1 mm for 120 s with a compressed air pressure of 0.5 MPa increased the load capacity of the adhesive joints by 33%. Numerical simulations have shown that shot peening, by deforming the joined elements, reduces the stress perpendicular to the surface of the adhesive layer which results in a reduction of equivalent (von Misses) stress and an increase in strength of adhesive joints.
PL
Celem artykułu było określenie wpływu pneumokulkowania zewnętrznej powierzchni zakładki na stan naprężeń w spoinie klejowej oraz nośność połączeń klejowych jednozakładkowych wykonanych ze stopu aluminium EN AW-2024-T3. W ramach badań przeprowadzono doświadczenia eksperymentalne i obliczenia numeryczne. Zgodnie z wynikami doświadczeń eksperymentalnych, pneumokulkowanie połączeń klejowych kulkami o średnicy 1 mm w czasie 120 s z ciśnieniem sprężonego powietrza wynoszącym 0,5 MPa przyczyniło się do wzrostu nośności połączeń klejowych o 33%. Obliczenia numeryczne wykazały, że pneumokulkowanie, poprzez odkształcenie klejonych elementów, zmniejsza naprężenia prostopadłe do powierzchni spoiny klejowej, co skutkuje zmniejszeniem jej wytężenia (naprężenień zredukowanych) i wzrostem wytrzymałości połączeń klejowych.
Rocznik
Tom
Strony
32--40
Opis fizyczny
Bibliogr. 35 poz., il. kolor., rys., wykr.
Twórcy
  • Wydział Budowy Maszyn i Lotnictwa Politechniki Rzeszowskiej, Katedra Technologii Maszyn i Inżynierii Produkcji, al. Powstańców Warszawy 8, 35-959 Rzeszów
  • Wydział Mechatroniki, Uzbrojenia i Lotnictwa Wojskowej Akademii Technicznej, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warszawa
autor
  • Wydział Budowy Maszyn i Lotnictwa Politechniki Rzeszowskiej, Katedra Technologii Maszyn i Inżynierii Produkcji, al. Powstańców Warszawa 8, 35-959 Rzeszów
Bibliografia
  • [1] Aimmanee S., Preeda H. 2017. “Stress analysis of adhesive-bonded tubular-coupler joints with optimum variable-stiffness-composite adherend under torsion”. Composite Structures 164: 76-89. https://doi.org/10.1016/ j.compstruct.2016.12.043
  • [2] Ashcroft I.A., Mubashar A. 2018. Numerical approach: Finite element analysis. In da Silva L.F.M., Öchsner A., Adams R. (eds.) Handbook of Adhesion Technology, 701-740. Springer-Verlag, Berlin Heidelberg. https:// doi.org/10.1007/978-3-319-55411-2_25
  • [3] ASTM B209-96. Standard specification for aluminium and aluminium-alloy sheet and plate. ASTM International, West Conshohocken, PA, USA, 1996.
  • [4] Bretuj W., Wieczorek K. 2016. „Zachowanie się układu hybrydowego izolatorów kompozytowego i ceramicznego w warunkach eksploatacyjnych”. Przegląd elektrotechniczny 10: 171-174.
  • [5] Bucior M., Gałda L., Stachowicz F., Zielecki W. 2016. “The effect of technological parameters on intensity of shot peening proces of 51CrV4 steel”. Acta Mechanica et Automatica 10(3): 213-217.
  • [6] Bucior M., Zielecki W., Kubit A. 2017. “Construction of heads for strengthening of plate and butt-welded joints with pneumatic shot peeing methods”. Technologia i Automatyzacja Montażu 4: 32-36.
  • [7] Calik A. 2016. “Effect of adherend shape on stress concentration reduction of adhesively bonded single lap joint”. Engineering Review 36: 29-34.
  • [8] da Silva L.F.M., Marques E.A.S., Campilho R.D.S.G. 2018. Design rules and methods to improve joint strength. In da Silva L.F.M., Öchsner A., Adams R. (eds.) Handbook of Adhesion Technology, 773-810. Springer- Verlag, Berlin Heidelberg. https://doi.org/10.1007/978- 3-319-55411-2_27
  • [9] Domińczuk J. 2013. „Model numeryczny pozwalający na ocenę wpływu długości zakładki na wytrzymałość połączeń klejowych”. Technologia i Automatyzacja Montażu 3: 50-54.
  • [10] Godzimirski J., Jagiełło A. 2018. “Effect of surface treatment cold-work hardening after adhesive curing on strength of adhesive lap joints”. Technologia i Automatyzacja Montażu 4: 43-49.
  • [11] Godzimirski J., Pietras A. 2013. „Modelowanie spoin połączeń klejowych w obliczeniach MES”. Technologia i Automatyzacja Montażu 4: 40-44.
  • [12] Godzimirski J., Tkaczuk S. 2001. „Możliwość wykorzystania MES do obliczania wytrzymałości połączeń klejowych”. Technologia i Automatyzacja Montażu 2: 43-46.
  • [13] Günther N., Griese M., Stammen E., Dilger K. 2020. “Loading capacity of adhesive joints regarding their manufacturing proces”. Journal of Advanced Joining Processes 1: 100020. https://doi.org/10.1016/j.jajp. 2020.100020
  • [14] Hart-Smith L.J. 2018. Adhesively bonded joints in aircraft structures. In da Silva L.F.M., Öchsner A., Adams R. (eds.) Handbook of Adhesion, 1235-1284. . Springer- Verlag, Berlin Heidelberg. https://doi.org/10.1007/978-3- 642-01169-6_44
  • [15] Her S.C., Chan C.F. 2019. “Interfacial Stress Analysis of Adhesively Bonded Lap Joint”. Materials 12: 2403. https://doi.org/10.3390/2Fma12152403
  • [16] Kavdir E.Ç., Aydin M.D. 2020. “The experimental and numerical study on the mechanical behaviors of adhesively bonded joints“. Compos Part B 184: 107725. https://doi.org/10.1016/j.compositesb.2019.107725
  • [17] Korzyńska K. 2019. „Badania wpływu procesu pneumokulowania na wytrzymałość zakładkowych połączeń klejowych". Rozprawa doktorska, Politechnika Lubelska, Lublin.
  • [18] Korzyńska K., Zielecki W., Korzyński M. 2018. “Relationship between residual stress and strength of single lap joints made of Ti6Al4V alloy, adhesively bonded and treated using pneumatic ball peening”. Journal of Adhesion Science and Technology 32(17): 1849-1860. https://doi.org/10.1080/01694243.2018.1450108
  • [19] Lin Q., Liu H., Zhu C., Chen D., Zhou S. 2020. “Effects of different shot peening parameters on residual stress, surface roughness and cell size”. Surf Coat Technol 398:126054. https://doi.org/10.1016/j.surfcoat.2020. 126054
  • [20] Loctite EA 3430 technical data, [access November 2021], http://tds.henkel.com/tds5/Studio/ShowPDF/243%20NE W-EN?pid=EA%203430&format=MTR&subformat= HYS&language=PL&plant=WERCS
  • [21] Mirski Z., Wróblewski R., Gołembiewski A. 2015. „Resistance of adhesive joints to impact high temperature”. Przegląd spawalnictwa 10: 108-114.
  • [22] Omari M.A., Mousa H.M., AL-Oqla F.M. et al. 2019. “Enhancing the surface hardness and roughness of engine blades using the shot peening proces”. International Journal of Minerals, Metallurgy, and Materials 26: 999-1004. https://doi.org/10.1007/s12613-019-1818-5
  • [23] Petrie E.M. 2008. “The fundamentals of adhesive joint design and construction: Function-specific construction is the key to proper adhesion and load-bearing capabilities”. Metal Finishing 106(11): 55-57. https://doi.org/10.1016/ S0026-0576(08)80314-5
  • [24] PN EN 1465:2009 Adhesives - Determination of tensile lap-shear strength of bonded assemblies. Warsaw: Polish Committee for Standardization.
  • [25] PN-EN ISO 4287:1999. Specifications of product geometry - Geometric structure of the surface: profile method - Terms, definitions and parameters of the geometric structure of the surface. Warsaw: Polish Committee for Standardization.
  • [26] Rodopoulos C.A., Curtis S.A., de los Rios E.R., Solis Romero J. 2004. “Optimisation of the fatigue resistance of 2024-T351 aluminium alloys by controlled shot peening-methodology, results and analysis”. International Journal of Fatigue 26: 849-856.
  • [27] Tan L., Yao C., Zhang D., Ren J., Shen X., Zhou Z. (2020). Effects of different mechanical surface treatments on surface integrity of TC17 alloys. Surface and Coatings Technology 398: 126073. https://doi.org/10.1016/j. surfcoat.2020.126073
  • [28] Zaleski K. 2009. “The effect of shot peening on the fatigue life of parts made of titanium alloy ti-6Al-4V”. Maintenance and Reliability 4: 65-71.
  • [29] Zhao X., Adams R.D., da Silva L.F.M. 2011. “Single lap joints with rounded adherend corners: Experimental results and strength prediction”. Journal of Adhesion Science and Technology 25: 837-856.
  • [30] Zielecki W. 2008. “Determinants determining the strength properties of adhesive joint. Habilitation Thesis, Technical University of Košice, Košice, 2008.
  • [31] Zielecki W., Bąk Ł., Guźla E., Bucior M. 2019. „Analiza statystyczna wpływu parametrów pneumokulowania na nośność połączeń klejowych stopu aluminium 2024”. Technologia i Automatyzacja Montażu 1: 30-34.
  • [32] Zielecki W., Korzyńska K. 2016. „Umacnianie zakładkowych połączeń klejowych stopu tytanu Ti6Al4V metodą pneumokulowania”. Technologia i Automatyzacja montażu 1: 44-47.
  • [33] Zielecki W., Perłowski R., Trzepieciński T. 2007. „Analiza stanu naprężeń w spoinie połączenia klejowego umocnionego metodą pneumokulkowania”. Technologia i Automatyzacja Montażu 1: 31-33.
  • [34] Zielecki W., Trzepieciński T., Bąk Ł., Ozga E. 2022. "Load capacity of single-lap adhesive joints made of 2024-T3 aluminium alloy sheets after shot peening". The International Journal of Advanced Manufacturing Technology 119: 3013-3028.
  • [35] Zielecki W., Zielecki K. 2010. „Analiza MES wpływu struktury geometrycznej powierzchni na stan naprężeń w spoinie klejowej”. Technologia i Automatyzacja Montażu 4: 49-51.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0621d198-4562-49be-937c-56cc44a36bb6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.