PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Degradation of sertraline in water by suspended and supported TiO2

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Pharmaceutical pollutants have been detected in many countries in surface and ground water after treatment in wastewater treatment plants. The presented studies concern the photocatalytic removal of one of SSRI antidepressants - sertraline from water using TiO2  photocatalyst. The process was conducted using two laboratory installations with periodic and flow reactors. Two forms of TiO2  was used in the photocatalytic reactions: suspended and supported onto a glass fabric. The studies shown that with increasing initial concentration of pharmaceutical, photoactivity decreases. For the initial concentration of 0.025 g/dm3 , the best results – 94% removal – was achieved for the process conducted in the periodic reactor with TiO2  supported onto a glass fabric.
Rocznik
Strony
107--112
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
autor
  • West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Pułaskiego St. 10, 70-322 Szczecin, Poland
  • West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Pułaskiego St. 10, 70-322 Szczecin, Poland
Bibliografia
  • 1. Richardson, M.L. & Bowron, J.M. (1985). The fate of pharmaceutical chemicals in the aquatic environment. J. Pharm. Pharmacol. 37(1), 1–12. DOI: 10.1111/j.2042-7158.1985.tb04922.x.
  • 2. Watts, C.D., Crathorne, M., Fielding, M. & Steel, C.P. (1983). In G. Angeletti & A. Bjørseth (Eds.), Identification of non-volatile organics in water using field desorption mass spectrometry and high performance liquid chromatography (pp.120–131). Dordrecht: Reidel Publishing Corporation.
  • 3. Bottoni, P. & Caroli, S. (2015). Detection and cation of residues and metabolites of medicinal products in environmental compartments, food commodities and workplaces. A review. J. Pharm. Biomed. Anal. 106, 3–24. DOI: 10.1016/j.jpba.2014.12.019.
  • 4. Calisto, V. & Esteves, V.I. (2009). Psychiatric pharmaceuticals in the environment. Chemosphere 77(10), 1257–1274. DOI: 10.1016/j.chemosphere.2009.09.021.
  • 5. Tong, A.Y.C., Braund, R., Warren, D.S. & Peake, B.M. (2012). TiO2-assisted photodegradation of pharmaceuticals – a review. Cent. Eur. J. Chem. 10(4), 989–1027. DOI: 10.2478/s11532-012-0049-7.
  • 6. Fent, K., Weston, A.A. & Caminada, D. (2006). Ecotoxicology of human pharmaceuticals. Aquat. Toxicol. 76(2), 122–159. DOI: 10.1016/j.aquatox.2005.09.009.
  • 7. Sanderson, H., Johnson D.J., Reitsma, T., Brain, R.A., Wilson, C.J. & Solomon, K.R. (2004). Ranking and prioritization of environmental risks of pharmaceuticals in surface waters. Regul. Toxicol. Pharm. 39(2), 158–183. DOI: 10.1016/j.yrtph.2003.12.006.
  • 8. Silva, L.J.G., Pereira, A.M.P.T., Meisel, L.M., Lino, C.M. & Pena, A. (2015). Reviewing the serotonin reuptake inhibitors (SSRIs) footprint in the aquatic biota: Uptake, bioaccumulation and ecotoxicology. Environ. Pollut. 197, 127–143. DOI: 10.1016/j.envpol.2014.12.002.
  • 9. Khetan, S.K. & Collins, T.J. (2007). Human pharmaceuticals in the aquatic environment: A challenge to green chemistry. Chem. Rev. 107(6), 2319–2364. DOI: 10.1021/cr020441w.
  • 10. Vasquez, M.I., Lambrianides, A., Schneider, M., Kümmerer, K. & Fatta-Kassinos, D. (2014). Environmental side effects of pharmaceutical cocktails: What we know and what we should know. J. Hazard. Mater. 279, 169–189. DOI: 10.1016/j.jhazmat.2014.06.069.
  • 11. Rivera-Utrilla, J., Sánchez-Polo, M., Ferro-García, M.A., Prados-Joya, G. & Ocampo-Pérez, R. (2013). Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere 93(7), 1268–1287. DOI: 10.1016/j.chemosphere.2013.07.059.
  • 12. Santoke, H., Song, W., Cooper, W.J. & Peake, B.M. (2012). Advanced oxidation treatment and photochemical fate of selected antidepressant pharmaceuticals in solutions of Suwannee River humic acid. J. Hazard. Mater. 217–218, 382–390. DOI: 10.1016/j.jhazmat.2012.03.049.
  • 13. Jiang, J.Q., Zhou, Z. & Sharma, V.K. (2013). Occurrence, transportation, monitoring and treatment of emerging micro-pollutants in waste water - A review from global views. Microchem. J. 110, 292–300. DOI: 10.1016/j.microc.2013.04.014.
  • 14. Khraisheh, M., Kim, J., Campos, L., Al-Muhtaseb, A.H., Al-Hawari, A., Al Ghouti, M. & Walker, G.M. (2014). Removal of pharmaceutical and personal care products (PPCPs) pollutants from water by novel TiO2-Coconut Shell Powder (TCNSP) composite. J. Ind. Eng. Chem. 20(3), 979–987. DOI: 10.1016/j.jiec.2013.06.032.
  • 15. Białk, A. & Stepnowski, P. (2012, April). Analityka pozostałości farmaceutyków w żywności i próbkach środowiskowych. Retrieved March 20, 2018, from http://www.labportal.pl/article/analityka-pozostalosci-farmaceutykow-w-zywnosci-i-probkachsrodowiskowych
  • 16. Sosnowska, K., Styszko-Grochowiak, K. & Gołaś, J. 2009). Leki w środowisku – źródła, przemiany, zagrożenia. In Krakowska Konferencja Młodych Uczonych, 17–19 September 2009 (pp. 395–404). Kraków, Małopolskie, Poland: AGH University of Science and Technology.
  • 17. Szymniak, A. & Lach, J. (2012). Zagrożenie środowiska wodnego obecnością środków farmaceutycznych. Inżynieria i Ochrona Środowiska 15(3), 249–263.
  • 18. Ternes T.A. (1998). Occurrence of drugs in German sewage treatment plants and rivers. Wat. Res. 32(11), 3245–3260. DOI: 10.1016/S0043-1354(98)00099-2.
  • 19. Kruszelnicka, I., Ginter-Kramarczyk, D., Zając, A. & Zembrzuska, J. (2015). Problematyka obecności Farmaceutyków w Ściekach. Wodociągi i Kanalizacja 5, 96–99.
  • 20. Evgenidou, E.N., Konstantinou, I.K. & Lambropoulou, D.A. (2015). Occurrence and removal of transformation products of PPCPs and illicit drugs in wastewaters: A review. Sci. Total Environ. 505, 905–926. DOI: 10.1016/j.scitotenv.2014.10.021.
  • 21. Hignite, C. & Azarno, D.L. (1977). Drugs and drug metabolites as environmental contaminants: Chlorophenoxyisobutyrate and salicylic acid in sewage water effl uent. Life Sci. 20(2), 337–342. DOI: 10.1016/0024-3205(77)90329-0.
  • 22. Rogers, I.H., Birtwell, I.K. & Kruzynski, G.M. (1986). Organic extractables in municipal wastewater Vancouver, British Columbia. Water Poll. Res. J. Can. 21, 187–204.
  • 23. Marciocha, D., Raszka, A. & Surmacz-Górska, J. (2009). Leki w środowisku. Sulfametoksazol i trymetoprim jako jedne z najczęściej wykrywanych chemioterapeutyków w środowisku wodnym. In III Ogólnopolski Kongres Inżynierii Środowiska, 13–17 September 2009 (pp. 145–156). Lublin, Poland: Lublin University of Technology.
  • 24. Felis, E., Miksch, K., Surmacz-Górska, J. & Ternes, T. (2005). Presence of pharmaceutics in wastewater from WWTP “Zabrze Śródmieście” in Poland. Arch. Ochr. Środow. 31(3), 49–58.
  • 25. Schultz, M.M., Painter, M.M., Bartell, S.E., Logue, A., Furlong, E.T., Werner, S.L. & Schoenfuss, H.L. (2011). Selective uptake and biological consequences of environmentally relevant antidepressant pharmaceutical exposures on male fathead minnows. Aquat. Toxicol. 104(12), 38–47. DOI: 10.1016/j.aquatox.2011.03.011.
  • 26. Lajeunesse, A., Gagnon, C., Gagné, F., Louis, S., Čejka, P. & Sauvé, S. (2011). Distribution of antidepressants and their metabolites in brook trout exposed to municipal wastewaters before and after ozone treatment – Evidence of biological effects. Chemosphere 83(4), 564571. DOI: 10.1016/j.chemosphere. 2010.12.026.
  • 27. Mąka, E., Wojtyniak, B. & Moskalewicz, B. (2012). In Wojtyniak B., Goryński, P. & Moskalewicz, B. (Eds.) Zaburzenia psychiczne i zaburzenia zachowania. Sytuacja zdrowotna ludności Polski i jej uwarunkowania (pp. 173–187). Warszawa: Narodowy Instytut Zdrowia Publicznego – Państwowy Zakład Higieny.
  • 28. Ochiai, T. & Fujishima, A. (2012). Photoelectrochemical properties of TiO2 photocatalyst and its applications for environmental purification. J. Photochem. Photobiol. C: Photochem. Rev. 13(4), 247–262. DOI: 10.1016/j.jphotochemrev.2012.07.001.
  • 29. Mozia, S. (2010). Photocatalytic membrane reactors (PMRs) in water and wastewater treatment. A review. Sep. Purif. Technol. 73(2), 71–91. DOI: 10.1016/j.seppur.2010.03.021.
  • 30. Sillanpaa, M., Ncibi, M.C. & Matilainen, A. (2018). Advanced oxidation processes for the removal of natural organic matter from drinking water sources: A comprehensive review. J. Environ. Manage. 208, 56–76. DOI: 10.1016/j.jenvman. 2017.12.009.
  • 31. Dewil, R, Mantzavinos, D., Poulios, I & Rodrigo, M.A. (2017). New perspectives for Advanced Oxidation Processes. J. Environ. Manage. 195(2), 93–99. DOI: 10.1016/j.jenvman. 2017.04.010.
  • 32. Lee, S.Y. & Park, S.J. (2013). TiO2 photocatalyst for water treatment applications. J. Ind. Eng. Chem. 19(6), 1761–1769. DOI: 10.1016/j.jiec.2013.07.012.
  • 33. Ohtani, B. (2014). Revisiting the Original Works Related to Titania Photocatalysis: A Review of Papers in the Early Stage of Photocatalysis Studies. Electrochemistry 82(6), 414425. DOI: 10.5796/electrochemistry.82.414.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-06219dfe-95f1-43f5-a1ed-0bf2b4754301
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.