PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Static and dynamic debonding strength of bundled glass fibers

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Experimental design and computational model for predicting debonding initiation and propagation are of interest of scientists and engineers. The design and model are expected to explain the phenomenon for a wide range of loading rates. In this work, a method to measure and quantify debonding strength at various loading rates is proposed. The method is experimentally verified using data obtained from a static test and a pulse-type dynamic test. The proposed method involves the cohesive zone model, which can uniquely be characterized with a few parameters. Since those parameters are difficult to be measured directly, indirect inference is deployed where the parameters are inferred by minimizing discrepancy of mechanical response of a numerical model and that of the experiments. The main finding suggests that the design is easy to be used for the debonding characterization and the numerical model can accurately predict the debonding for the both loading cases.The cohesive strength of the stress-wave case is significantly higher than that of the static case; meanwhile, the cohesive energy is twice larger.
Rocznik
Strony
209--220
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
  • Industrial Engineering Department, BINUS Graduate Program–Master of Industrial Engineering, Bina Nusantara University, Jakarta, Indonesia 11480
Bibliografia
  • [1] W.G. Roeseler, B. Sarh, and M. Kismarton: Composite structures: The first 100 years. In Proceedings of 16th International Conference on Composite Materials, Kyoto, Japan, July 9 2007.
  • [2] C. Shet and N. Chandra. Analysis of energy balance when using cohesive zone models to simulate fracture processes. Transactions of the ASME: Journal of Engineering Materials and Technology, 124:440–450, October 2002.
  • [3] F.E. Gunawan. Debonding strength of bundled glass fibers subjected to stress pulse loading. Engineering Fracture Mechanics, 78(16):2731–2745, Nov 2011. doi: 10.1016/j.engfracmech.2011.07.008.
  • [4] M.A. Minnicino and M.H. Santare. Modeling the progressive damage of the microdroplet test using contact surface with cohesive behavior. Composites Science and Technology, 72(16):2024–2031, 2012. doi:10.1016/j.compscitech.2012.09.009.
  • [5] K.N. Anyfantis and N.G. Tsouvalis. Loading and fracture response of CFRP-to-steel adhesively bonded joints with thick adherents – Part II: Numerical simulation. Composite Structures, 96:858–868, 2013. doi:10.1016/j.compstruct.2012.08.056.
  • [6] E. Nwankwo, A. Soleiman Fallah, and L.A. Louca. An investigation of interfacial stresses in adhesively-bonded single lap joints subject to transverse pulse loading. Journal of Sound and Vibration, 332(7):1843–1858, 2013. doi:10.1016/j.jsv.2012.11.008.
  • [7] T. Schüller, W. Becker, and B. Lauke. Analytical and numerical calculation of the energy release rate for the micro bond test. The Journal of Adhesion, 70:33–56, 1999. doi: 10.1080/00218469908010486.
  • [8] L.P. Hann and D. E.Hirt. Simulating the microbond technique with macrodroplets. Composites Science and Technology, 54(4): 423-430, 1995. doi:10.1016/0266-3538(95)00080-1.
  • [9] B. Miller, P. Muri, and L. Rebenfeld. A microbond method for determination of the shear strength of a fiber/resin interface. Composites Science and Technology, 28(1):17–32, 1987. doi: 10.1016/0266-3538(87)90059-5.
  • [10] C.-H. Liu and J.A. Naim. Analytical and experimental methods for a fracture mechanics interpretation of the micro bond test including the effect of friction and thermal stresses. International Journal of Adhesion and Adhesives, 19(1):59–70, 1999. doi:10.1016/S0143-7496(98)00057-8.
  • [11] J.-P. Favre and M.-C. Merienne. Characterization of fibre/resin bonding in composites using a pull-out test. International Journal of Adhesion and Adhesives, 1(6):311–316, 1981. doi: 10.1016/0143-7496(81)90025-7.
  • [12] J.-K. Kim, C. Baillie, and Y.-W. Mai. Interfacial debonding and fiber pull-out stresses. Part 1: Critical comparison of existing theories with experiments. Journal of Materials Science, 27(12):3143–3154,1991. doi:10.1007/BF01116004.
  • [13] J.K. Wells and P.W.R. Beaumont. Debonding and pull-out processes in fibrous composites. Journal of Materials Science, 20(4):1275–1284, 1985. doi:10.1007/BF01026323.
  • [14] J.A. Nairn, C.-H. Liu, D.-A. Mendels, and S. Zhandarov. Fracture mechanics analysis of the single-fiber pull-out test and the micro bond test including the effect of friction and thermal stresses. In Proceeding of 16th Annual Technology Conference of the American Society of Composites, Blacksburg, VA, USA, 9–12 September, 2001.
  • [15] L.-M. Zhou, Y.-W. Mai, and L. Ye. Analyses of fiber push-out test based on the fracture mechanics approach. Composites Engineering, 5(10-11):1199–1219, 1995. doi:10.1016/09619526(95)00053-P.
  • [16] G. Lin, P.H. Geubelle, and N.R. Sottos. Simulation of fiber debonding and frictional sliding in a model composite push-out test. International Journal of Solids and Structures, 38(46-47):8547–8562, 2001. doi:10.1016/S0020-7683(01)00085-3.
  • [17] Z. Li, X. Bi, J. Lambros, and P.H. Geubelle. Dynamic fiber debonding and frictional push-out in model composites systems: experimental observations. Experimental Mechanics, 42(4):417–425, 2002. doi:10.1007/BF02412147.
  • [18] X. Bi, Z. Li, P.H. Geubelle, and J. Lambros. Dynamic fiber debonding and frictional push-out in model composite systems: numerical simulations. Mechanics of Materials, 34(7):433–446, 2002. doi:10.1016/S0167-6636(02)00141-2.
  • [19] Abaqus. ABAQUS Analysis User’s Manual Version 6.8, 2008.
  • [20] P.H. Geubelle and J. Baylor. The impact-induced delamination of laminated composites: A 2D simulation. Composites, Part B: Engineering, 29(5):589–602, 1998. doi:10.1016/S13598368(98)00013-4.
  • [21] P.P. Camanho and C.G. Davila. Mixed-mode decohesion finite elements for the simulation of delamination in composite materials. Technical Report NASA/TM-2002-211737, NASA Langley Research Center, Hampton, VA, USA, June 2002.
  • [22] D. Zheng and Q. Li. Micromechanics model for static and dynamic strength of concrete under confinement. Frontiers of Architecture and Civil Engineering in China, 24):329–335, 2008. doi:10.1007/s11709-008-0044-4.
  • [23] J.F. Kalthoff, J. Beinert, and S. Wrinkler. Measurement of dynamic stress intensity factors for fast running and arresting cracks in double-cantilever-beam specimens. In Fast Fracture and Crack Arrest, Proceedings of Symposium, Chicago, 28-30 June 1976. ASTM STP 627, pages 161–176,1977. doi:10.1520/STP27387S.
  • [24] T. Nishioka and S.N. Atluri. A numerical study of the use of path independent integrals in elasto-dynamic crack propagation. Engineering Fracture Mechanics, 18(1):23–33, 1983. doi: 10.1016/0013-7944(83)90092-9.
  • [25] S. Feih, K. Wonsyld, D. Minzari, P. Westermann, and H. Lilholt. Testing procedure for the single fiber fragmentation test. Technical Report Riso-R-1483, Riso National Laboratory, Roskilde, Denmark, December 2004.
  • [26] A. Awal, G. Cescutti, S.B. Ghosh, and J.Müssig. Interfacial studies of natural fibre/polypropylene composites using single fibre fragmentation test (SFFT). Composites Part A: Applied Science and Manufacturing, 42(1):50–56, 2011. doi:10.1016/j.compositesa.2010.10.007.
  • [27] D. Tripathi and F.R Jones. Single fibre fragmentation test for assessing adhesion in fibre reinforced composites. Journal of Materials Science, 33(1):1–16, 1998. doi: 10.1023/A:1004351606897.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-061fd677-4ac8-4d57-a0c6-9dfc2b982b8b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.