Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Filler surface modification has become an essential approach to improve the compatibility problem between natural fillers and polymer matrices. However, there is limited work that concerns on this particular effect under dynamic loading conditions. Therefore, in this study, both untreated and treated low linear density polyethylene/rice husk composites were tested under static (0.001 s-1, 0.01 s-1 and 0.1 s-1) and dynamic loading rates (650 s-1, 900 s-1 and 1100 s-1) using universal testing machine and split Hopkinson pressure bar equipment, respectively. Rice husk filler was modified using silane coupling agents at four different concentrations (1, 3, 5 and 7% weight percentage of silane) at room temperature. This surface modification was experimentally proven by Fourier transform infrared and Field emission scanning electron microscopy. Results show that strength properties, stiffness properties and yield behaviour of treated composites were higher than untreated composites. Among the treated composites, the 5% silane weight percentage composite shows the optimum mechanical properties. Besides, the rate of sensitivity of both untreated and treated composites also shows great dependency on strain rate sensitivity with increasing strain rate. On the other hand, the thermal activation volume shows contrary trend. For fracture surface analysis, the results show that the treated LLDPE/RH composites experienced less permanent deformation as compared to untreated LLDPE/RH composites. Besides, at dynamic loading, the fracture surface analysis of the treated composites showed good attachment between RH and LLDPE.
Wydawca
Czasopismo
Rocznik
Tom
Strony
507--519
Opis fizyczny
Bibliogr. 40 poz., fot., rys., tab., wykr., wzory
Twórcy
autor
- Universiti Malaysia Perlis (UniMAP), Centre of Excellent Geopolymer & Green Technology (CeGeoGTech), Perlis, Malaysia
- Universiti Malaysia Perlis (UniMAP), Faculty of Chemical Engineering Technology, Perlis, Malaysia
- Universiti Malaysia Perlis (UniMAP), Centre of Excellent Geopolymer & Green Technology (CeGeoGTech), Perlis, Malaysia
- Universiti Malaysia Perlis (UniMAP), Faculty of Chemical Engineering Technology, Perlis, Malaysia
autor
- Universiti Malaysia Perlis (UniMAP), Centre of Excellent Geopolymer & Green Technology (CeGeoGTech), Perlis, Malaysia
- Universiti Malaysia Perlis (UniMAP), Faculty of Chemical Engineering Technology, Perlis, Malaysia
autor
- Częstochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, 42-200 Częstochowa, Poland
autor
- Częstochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, 42-200 Częstochowa, Poland
autor
- Universiti Sains Malaysia, School of Materials and Mineral Resources Engineering, Pulau Pinang, Malaysia
autor
- Universiti Malaysia Perlis (UniMAP), Centre of Excellent Geopolymer & Green Technology (CeGeoGTech), Perlis, Malaysia
- Universiti Malaysia Perlis (UniMAP), Centre of Excellent Geopolymer & Green Technology (CeGeoGTech), Perlis, Malaysia
autor
- Universiti Malaysia Perlis (UniMAP), Faculty of Chemical Engineering Technology, Perlis, Malaysia
Bibliografia
- [1] J.P. Dhal, S.C. Mishra, Processing and Properties of Natural Fiber-Reinforced Polymer Composite. J. Mater. 2013, 1-6 (2013).
- [2] I. Krupa, A. Luyt, Thermal and Mechanical Properties of Extruded LLDPE/wax blends. Polym. Degrad. Stab. 73 (1), 157-161 (2001).
- [3] S. Shinoj, R. Visvanathan, S. Panigrahi, N. Varadharaju, Dynamic Mechanical Properties of Oil Palm Fibre (OPF)-linear low density polyethylene (LLDPE) biocomposites and study of fibre-matrix interactions. Biosyst. Eng. 109 (2), 99-107 (2011).
- [4] A.I. Khalf, A.A. Ward, Use of rice husks as potential filler in styrene butadiene rubber/linear low density polyethylene blends in the presence of maleic anhydride. Mater. Des. 31 (5), 2414-2421 (2010).
- [5] S.M. Zabihzadeh, Water Uptake and Flexural Properties of Natural Filler/HDPE Composites. Bioresources. 5 (1), 316-323 (2010).
- [6] N. Soltani, A. Bahrami, L. González, A Review on the physicochemical treatments of rice husk for production of advanced materials. Chem. Eng. J. 264, 899-935 (2015).
- [7] L. Ludueña, D. Fasce, V.A. Alvarez, P.M. Stefani, Nanocellulose from rice husk following alkaline treatment to remove silica. Biores. 6 (2), 1440-1453 (2011).
- [8] T.P.T. Tran, J.-C. Bénézet, A. Bergeret, Rice and Einkorn wheat husks reinforced poly(lactic acid) (PLA) biocomposites: effects of alkaline and silane surface treatments of husks. Ind. Crops Prod. 58, 111-124 (2014).
- [9] S.-K. Yeh, C.-C. Hsieh, H.-C.Chang, C.C.C. Yen, Y.-C. Chang, Synergistic effect of coupling agents and fiber treatments on mechanical properties and moisture absorption of polypropylenerice husk composites and their foam. Compos. Part A Appl. Sci. Manuf. 68, 313-322 (2015).
- [10] M.M. Kabir, H. Wang, K.T. Lau, F. Cardona, Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Compos. Part B Eng. 43, 2883-2892 (2012).
- [11] Y. Xie, C.A.S. Hill, Z. Xiao, H. Militz, C. Mai, Silane coupling agents used for natural fiber/polymer composites: A review. Compos. Part A Appl. Sci. Manuf. 41, 806-819 (2010).
- [12] M. Abdelmouleh, S. Boufi, M.N. Belgacem, A. Dufresne, Short natural-fibre reinforced polyethylene and natural rubber composites: effect of silane coupling agents and fibres loading. Compos. Sci. Technol. 67, 1627-1639 (2007).
- [13] H. Demir, U. Atikler, D. Balköse, F. Tıhmınlıoğlu, The effect of fiber surface treatments on the tensile and water sorption properties of polypropylene-luffa fiber composites. Compos. Part A Appl. Sci. Manuf. 37, 447-456 (2006).
- [14] N.A. Maziad, D.E. El-Nashar, E.M. Sadek, The effects of a silane coupling agent on properties of rice husk-filled maleic acid anhydride compatibilized natural rubber/low-density polyethylene blend. J. Mater. Sci. 44, 2665-2673 (2009).
- [15] H. Ku, H. Wang, N. Pattarachaiyakoop, M. Trada, A review on the tensile properties of natural fiber reinforced polymer composites. Compos. Part B Eng. 42, 856-873 (2011).
- [16] J.O. Agunsoye, V.S. Aigbodion, Bagasse filled recycled polyethylene bio-composites: morphological and mechanical properties study. Results Phys. 3, 187-194 (2013).
- [17] S.N. Kasa, M.F. Omar, M.M.A. Abdullah, I.N. Ismail, S.S. Ting, S.C. Vac, P. Vizureanu, Effect of Unmodified and Modified Nanocrystalline Cellulose Reinforced Polylactic Acid (PLA) Polymer Prepared by Solvent Casting Method Morphology, Mechanical and Thermal Properties. Mater. Plast. 54 (1), 91-97 (2017).
- [18] H. Jaya, M.F. Omar, H.M. Akil, Z.A. Ahmad, N.N. Zulkepli, M.M.A. Abdullah, I.G. Sandu, P. Vizureanu, Effect of Surface Modification on Sawdust Reinforced High Density Polyethylene Composites Under a Wide Range of Strain Rates, Mater. Plast. 53 (1), 85-90 (2016).
- [19] G.E. Popita, C. Rosu, D. Manciula, O. Corbu, A. Popovici, O. Nemes, A.V. Sandu, M. Proorocu, S.B. Dan, Industrial Tanned Leather Waste Embedded in Modern Composite Materials. Mater. Plast. 53 (2), 308-311 (2016).
- [20] H.S. Kim, B.H. Lee, S.W. Choi, S. Kim, H.J. Kim, The Effect of types of maleic anhydride-grafted polypropylene (mapp) on the in terfacial adhesion properties of bio-flour-filled polypropylene composites. Compos. Part A Appl. Sci. Manuf. 38, 1473-1482 (2007).
- [21] M.N. Ichazo, C. Albano, J. Gonzalez, R. Perera, M.V. Candal, Polypropylene/wood flour composites: Treatments and properties. Compos. Struct. 54, 207-214 (2001).
- [22] D.J. Frew, M.J. Forrestal, W. Chen, Pulse shaping techniques for testing brittle materials with a split Hopkinson pressure bar. Exp. Mech. 42, 93-106 (2002).
- [23] F. Hughes, A. Prudom, G. Swallowe, The high strain-rate behaviour of three molecular weights of polyethylene examined with a magnesium alloy split-Hopkinson pressure bar. Polym. Test. 32, 827-834 (2013).
- [24] Z. Li, J. Lambros, Determination of the dynamic response of brittle composites by the use of the split Hopkinson pressure bar. Compos. Sci. Technol. 59, 1097-1107 (1999).
- [25] R. Syafri, I. Ahmad, I. Abdullah, Effect of rice husk surface modification by LENR the on mechanical properties of NR/HDPE reinforced rice husk composite. Sains Malaysiana 40, 749-756 (2011).
- [26] T. Lu, M. Jiang, Z. Jiang, D. Hui, Z. Wang, Z. Zhou, Effect of surface modification of bamboo cellulose fibers on mechanical properties of cellulose/epoxy composites. Compos. Part B Eng. 51, 28-34 (2013).
- [27] A. Valadez-Gonzalez, J.M. Cervantes-Uc, R. Olayo, P.J. Herrera-Franco, Effect of fiber surface treatment on the fiber-matrix bond strength of natural fiber reinforced composites. Compos. Part B Eng. 30, 309-320 (1999).
- [28] M.S. Huda, L.T. Drzal, A.K. Mohanty, M. Misra, The effect of silane treated- and untreated-talc on the mechanical and physico-mechanical properties of poly(lactic acid)/newspaper fibers/talc hybrid composites. Compos. Part B Eng. 38, 367-379 (2007).
- [29] C. Guo, L. Zhou, J. Lv, Effects of expandable graphite and modified ammonium polyphosphate on the flame-retardant and mechanical properties of wood flour-polypropylene composites. Polym. & Polym. Compos. 21 (7), 449-456 (2013).
- [30] S. Ifuku, H. Yano, Effect of a silane coupling agent on the mechanical properties of a microfibrillated cellulose composite. Int. J. Biol. Macromol. 74, 428-432 (2015).
- [31] H. Demir, D. Balköse, S. Ülkü, Influence of surface modification of fillers and polymer on flammability and tensile behaviour of polypropylene-composites. Polym. Degrad. Stab. 91, 1079-1085 (2006).
- [32] I. O. Oladele, J.A. Omotoyinbo, J.O.T Adewara, Investigating The Effect of Chemical Treatment on the Constituents and Tensile Properties of Sisal Fibre. J. Miner. Mater. Charact. Eng. 9 (6), 569-582 (2010).
- [33] C. Parida, S.K. Dash, S.C. Das, Effect of Fiber Treatment and Fiber Loading on Mechanical Properties of Luffa - Resorcinol Composites. Ind. J. Mater. Sci. 2015, 1-6 ( 2015).
- [34] D. Shanmugam, M. Thiruchitrambalam, Static and dynamic mechanical properties of alkali treated unidirectional continuous Palmyra Palm Leaf Stalk Fiber/jute fiber reinforced hybrid polyester composites. Mater. Des. 50, 533-542 (2013).
- [35] I.L. Dubnikova, S.M. Berezina, A.V. Antonov, Effect of rigid particle size on the toughness of filled polypropylene. J. Appl. Polym. Sci. 94, 1917-1926 (2004).
- [36] S.-T. Chiou, W.-C. Cheng, W.-S. Lee, Strain rate effects on the mechanical properties of a Fe-Mn-Al alloy under dynamic impact deformations. Mater. Sci. Eng. A 392, 156-162 (2005).
- [37] M.F. Omar, N.S. Abd Wahab, H.M. Akil, Z.A. Ahmad, M.F.A Rasyid, N.Z. Noriman, Effect of Surface Modification on Strain Rate Sensitivity of Polypropylene/Muscovite Layered Silicate Composites. Mater. Sci. Forum 803, 343-347 (2014).
- [38] L.J. Broutman, Measurement of the Fiber-Polymer Matrix Interfacial Strength. In Interfaces In Composites, ASTM STP 452, 27-41 (1969).
- [39] G. Canché-Escamilla, J. Rodriguez-Laviada, J.I. Cauich-Cupul, E. Mendizábal, J.E. Puig, P.J. Herrera-Franco, Flexural, impact and compressive properties of a rigid-thermoplastic matrix/cellulose fiber reinforced composites. Compos. - Part A Appl. Sci. Manuf. 33, 539-549 (2002).
- [40] R. Santiagoo, H. Ismail, K. Hussin, Mechanical properties, water absorption, and swelling behaviour of rice husk powder filled polypropylene/recycled acrylonitrile butadiene rubber (PP/NBRr/RHP) biocomposites using silane as a coupling agent. Biores. 6 (4), 3714-3726 (2011).
Uwagi
1. The author would like to acknowledge Malaysian Ministry of Higher Education (MOHE), Fundamental Research Grant (FRGS) (grant no.: FRGS/2/2013TK04/UNIMAP/02/2), Universiti Malaysia Perlis (grant no.: 9003-00390, 9007-00067, 9017-00014, 9007-00130) and Universiti Sains Malaysia (USM) (grant no.: 811070) for sponsoring and providing financial assistance for this research work. The authors would like to extend their gratitude to Department of Physics and Faculty of Mechanical Engineering and Computer Science, Częstochowa University of Technology, Częstochowa, Poland.
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-061a4075-31a7-419e-90ac-da8f78923ace