PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Compositional arrangement of rod/shell nanoparticles: an approach to provide efficient plasmon waveguides

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, we investigated the optical properties of a novel compositional configuration of gold nanorod and silver nanoshell which is embedded in a SiO₂ substance. The proper geometrical sizes for compositional rod/shell arrangement have been obtained based on the position and peak of plasmon resonance at λ~1550 nm. Adjusting the plasmon resonance position at declared spectrum helps us to provide an arrangement which shows high efficiency and minimum losses. The influence of destructive components such as internal damping and scattering on the rod/shell combination is demonstrated by corresponding diagrams. Moreover, we proposed a nano-array based on examined configuration and the quality of light transmission along the array is studied. We figured out and depicted optical properties of the array such as transmission loss factors, group velocities, transmitted power, transmission quality, and two-dimensional snapshots of surface plasmons (Sps) coupling between nanoparticles arrangements under transverse and longitudinal modes excitations. Ultimately, it is shown that the suggested nanostructure based on studied nanoparticles configuration has a potential to utilize in designing nanophotonic devices such as splitters, couplers, and routers. Finite-difference time-domain method (FDTD) as a major simulation model has been employed to study the features of the waveguide.
Twórcy
  • Young Researchers and Elite Club, Ahar Branch, Islamic Azad University, Ahar, Iran
  • School of Engineering-Emerging Technologies, University of Tabriz, Tabriz 5166614761, Iran
Bibliografia
  • 1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, 2nd ed., Springer, Berlin, 1988.
  • 2. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, 1st ed., Springer, Berlin, 1995.
  • 3. S.A. Maier, Plasmonics, Fundamentals, and Applications, 1st ed., Springer, Berlin, 2007.
  • 4. B.E.A. Saleh and M.C. Teich, Fundamentals of Photonics, 2nd ed., Wiley, & Sons, New York, 1991.
  • 5. S.A. Maier, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides”, Nature Mat. 2, 229–232 (2003).
  • 6. S.A. Maier, P.G. Kik, and H.A. Atwater, “Observation of near-field coupling in metal nanoparticles chains using far-field polarization spectroscopy”, Phys. Rev. B67, 205402–205405 (2002).
  • 7. G. Veronis and S. Fan, “Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal Plasmonic waveguides”, Opt. Express 15, 1211–1221 (2007).
  • 8. S.A. Maier, M.L. Brongersma, P.G. Kik, S. Meltzer, A.A.G. Requicha, and H.A. Atwater, “Plasmonics - A route to nanoscale optical devices”, Adv. Mat. 19, 1501–1505 (2001).
  • 9. R. D. Averitt, D. Sarkar and N. J. Halas, “Plasmon resonance shift of Au2S nanoshells: Insight into multicomponent nanoparticles growth”, Phys. Rev. Lett. 78, 4217−4219 (1997).
  • 10. X. Guo, M. Qiu, J. Bao, B.J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits”, Nano. Lett. 9, 4515–4519 (2009).
  • 11. S. A. Maier, P. G. Kik, H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguide of different lengths: Estimation of waveguide loss”, Appl Phys. Lett. 2, 1714–1716 (2002).
  • 12. L. Novotny and C. Hafner, “Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function”, Phys. Rev. E. 50, 4094–4106 (1994).
  • 13. K.Y. Jung, F.L. Tiexeria, and R.M. Reano, “Au/SiO₂ nanoring plasmon waveguides at optical communication band”, IEEE J. Lightwave Technol. 9, 2757–2764 (2007).
  • 14. A.A. Govyadinov and V.A. Pdolskiy, “Active metamaterials: Sign of refractive index and gain-assisted dispersion management”, Appl. Phys. Lett. 97, 191103–191103(3) (2007).
  • 15. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and A. Kobayashi, “Guiding of a one-dimensional optical beam nanometer diameter”, Opt. Lett. 22, 475–477 (1997).
  • 16. A.V. Krasavin and A.V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polaritons wave guides”, Appl. Phys. Lett. 90, 211101(1)-211101(3) (2007).
  • 17. T. Holmgaard, S.I. Bozhenvolny, L. Markey, A. Dereux, A.V. Krasavin, P. Bolger, and A.V. Zayast, “Efficient excitation of dielectric-loaded surface plasmon-polariton wave guide modes at telecommunication wavelengths”, Phys. Rev. B78, 165431–165433 (2008).
  • 18. E. Ozbay, “Plasmonic: merging photonics and electronics at nanoscale dimensions”, Science 311, 189–193 (2006).
  • 19. A. Ahmadivand, S. Golmohammadi, and A. Rostami, “T and Y-splitters based on Au/SiO2 nanoring chain at an optical communication band”, Appl. Opt. 51, 2784–2793 (2012).
  • 20. A. Ahmadivand, S. Golmohammadi, and A. Rostami, “Broad comparison between Au nanoshperes, nanorods, and nanorings as an S-bend plasmon waveguide at optical C-band spectrum”, J. Opt. Tech. 80, 15–23 (2013).
  • 21. M. Silveirinha and N. Engheta, “Tunnelling of electromagnetic energy through subwavelength channels and bends using ε near zero materials”, Phys. Rev. Lett. 97, 157403–157405 (2006).
  • 22. E. Rosencher, B. Vinter, and P.G. Piva, Optoelectronics, 2nd Ed., Cambridge, London, (2002).
  • 23. A. Ahmadivand and S. Golmohammadi, “Comprehensive investigation of noble metal nanoparticles shapes, size and material on the optical response of optimal Plasmonic Y-splitter waveguides”, Opt. Commu. 310, 1–11 (2014).
  • 24. R.D. Averitt, S.L. Westcott, and N.J. Halas, “Linear optical properties of gold nanoshells”, J. Opt. Soc. Am. B16, 1824–1832 (1999).
  • 25. M. Quinten, A. Leitner, J.R. Krenn, and F.R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles”, Opt. Lett. 23, 1331–1333 (1998).
  • 26. S.Y. Park and D. Stroud, “Surface-plasmon dispersion relations in chains of metallic nanoparticles: An exact quasistatic calculation”, Phys. Rev. B, Condens. Matter. 69, 125418–125425 (2004).
  • 27. M.L. Brongersma, J.W. Hartman, and H.A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit”, Phys. Rev. B, Condens. Matter. 62, R16356–R16359 (2000).
  • 28. A. Taflove and S.C. Hagness, Computational Electromagnetics: The Finite-difference Time-Domain Method ,2nd ed. Norwood, MA: Artech House, 2000.
  • 29. J. Aizpurua, P. Hanarp, D.S. Sutherland, M. Käll, G.W. Bryant, and F.J. Garcia, “Optical properties of gold nanorings”, Phys. Rev. Lett. 90, 057401–057403 (2003).
  • 30. E.D. Palik, Handbook of Optical Constants of Solids,1st ed., Elsevier Science & Tech., New York, 1985.
  • 31. E.D. Palik and G. Ghosh, The Electronic Handbook of Optical Constants of Solids ,2nd ed., Academic press, San Diego, 1999.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-061776d7-4cb7-4395-a0b9-ae9e3ab3cc41
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.