PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The analysis of pile skin and base resistances interaction based on static pile load test in experimental research

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Static pile load tests in laboratory conditions were carried out to study the mechanism of the pile skin and pile base resistance mobilization with settlement and their interactions. The mechanism of the skin resistance at the base is important in the correct interpretation of the pile capacity. Especially in the case of piles shallowly embedded in the bearing layer. In the studies described in this article, high-precision piezoelectric elastic stress maps were used. The tests were carried out on piles with a diameter of 2.5–2.8 cm, and length of 40 cm. Static pile load tests were carried out to measure resistance at the pile base, settlement and change of stress in the soil at the level of the pile base or beneath the pile base were measured. The analysis of stress in soil allowed to investigate the interaction between the resistances of the pile base and skin. The state of stress in the soil close to the pile base, both beneath and above the pile base level was heavily influenced by the simultaneous mobilization of skin and base resistance.
Rocznik
Strony
141--150
Opis fizyczny
Bibliogr. 31 poz.
Twórcy
  • PhD; West Pomeranian University of Technology in Szczecin, Faculty of Civil and Environmental Engineering,al. Piastów 50a, 70-311 Szczecin, Poland
Bibliografia
  • [1] Lastiasih, Y.; Sidi, I.D. (2014). Reliability of Estimation Pile Load Capacity Methods. J. Eng. Technol. Sci., 46, 1–16, doi:10.5614/j.eng.technol.sci.2014.46.1.1.Otwórz DOI
  • [2] Hasnat, A. (2015). Prithul Saha Ultimate load capacity of axially loaded vertical piles from full scale load test results interpretations applied to 20 case histories., doi:10.13140/2.1.3755.2960.Otwórz DOI
  • [3] Wrana, B. (2015). Pile Load Capacity – Calculation Methods. Stud. Geotech. Mech., 37, doi:10.1515/sgem-2015-0048.Otwórz DOI
  • [4] Meyer, Z. (2017). Wykorzystanie testu statycznego do prognozy osiadania, mobilizacji podstawy i pobocznicy. In Proceedings of the Naprawy i wzmocnienia konstrukcji budowlanych; Wisła, 303–318.
  • [5] Meyer, Z.; Żarkiewicz, K. (2015). Analiza współpracy pala z gruntem w dużym zakresie osiadania. In Awarie Budowlane; Szczecin-Międzyzdroje, 405–412.
  • [6] Meyer, Z.; Żarkiewicz, K. (2018). Skin and Toe Resistance Mobilisation of Pile During Laboratory Static Load Test. Stud. Geotech. Mech, 40, 1–5.
  • [7] Siemaszko, P.; Meyer, (2019). Z. Static load test curve analysis based on soil field investigations. Bull. Polish Acad. Sci. Tech. Sci., 67, 329–337. doi:10.24425/bpas.2019.128607.Otwórz DOI
  • [8] Fioravante, V. (2002). On the shaft friction modeling of non-displacment piles in sand. Japanese Geotech. Soc., 42, 23–33, doi:10.1248/cpb.37.3229.Otwórz DOI
  • [9] Guo, Z.; Deng, L. (2018). Field behaviour of screw micropiles subjected to axial loading in cohesive soils. Can. Geotech. J., 55, 34–44, doi:10.1139/cgj-2017-0109.Otwórz DOI
  • [10] Gupta, R.C. (2013). Load-Settlement Behavior of Drilled Shafts in Multilayered Deposits of Soils and Intermediate Geomaterials. Geotech. Test. J., 36, 20130016, doi:10.1520/GTJ20130016.Otwórz DOI
  • [11] Kim, D.; Jeong, S.; Park, J. (2020). Analysis on shaft resistance of the steel pipe prebored and precast piles based on field load-transfer curves and finite element method. Soils Found., 60, 478–495. doi:10.1016/j.sandf.2020.03.011.Otwórz DOI
  • [12] Krasiński, A.; Sieńko, R. (2010). Pomiar pionowego rozkładu siły w palu podczas testów statycznych. In Proceedings of the 56 Konferencja Naukowa Komitetu Inżynierii Lądowej i Wodnej PAN oraz Komitetu Nauki PZiTB, 161–168.
  • [13] Gwizdala, K.; Krasinski, A. (2013). Bearing capacity of displacement piles in layered soils with highly diverse strength parameters. Proc. 18th Int. Conf. Soil Mech. Geotech. Eng, 2739–2742.
  • [14] Sienko, R.; Bednarski, L.; Kanty, P.; Howiacki, T. (2019). Application of Distributed Optical Fibre Sensor for Strain and Temperature Monitoring within Continuous Flight Auger Columns. IOP Conf. Ser. Earth Environ. Sci., 221. doi:10.1088/1755-1315/221/1/012006.Otwórz DOI
  • [15] Buda-Ożóg, L.; Zięba, J.; Sieńkowska, K.; Nykiel, D.; Zuziak, K.; Sieńko, R.; Bednarski, Ł. (2022). Distributed fibre optic sensing: Reinforcement yielding strains and crack detection in concrete slab during column failure simulation. Meas. J. Int. Meas. Confed., 195, doi:10.1016/j.measurement.2022.111192.Otwórz DOI
  • [16] Baca, M.; Rybak, J. (2021). Pile base and shaft capacity under various types of loading. Appl. Sci., 11, doi:10.3390/app11083396.Otwórz DOI
  • [17] Zarkiewicz, K. (2019). Laboratory Experiment of Soil Vertical Displacement Measurement Near an Axially Loaded Pile. IOP Conf. Ser. Mater. Sci. Eng., 603, 032012, doi:10.1088/1757-899X/603/3/032012.Otwórz DOI
  • [18] Wang, Y.; Liu, X.; Sang, S.; Zhang, M.; Wang, P. (2020). A model test for the influence of lateral pressure on vertical bearing characteristics in pile jacking process based on optical sensors. Sensors (Switzerland), 20, doi:10.3390/s20061733.Otwórz DOI
  • [19] Lehane, B.M.; White, D.J. (2005). Lateral stress changes and shaft friction for model displacement piles in sand. Can. Geotech. J., 42, 1039–1052, doi:10.1139/t05-023.Otwórz DOI
  • [20] Żarkiewicz, K. (2019). Lateral stress changes along the pile skin during axial loading in laboratory test. In Proceedings of the Geotechnical Engineering foundation of the future; Reykjavik, 1–8.
  • [21] Konkol, J.; Bałachowski, L. (2017). Influence of Installation Effects on Pile Bearing Capacity in Cohesive Soils – Large Deformation Analysis Via Finite Element Method. Stud. Geotech. Mech., 39, doi:10.1515/sgem-2017-0003.Otwórz DOI
  • [22] Tovar-Valencia, R.D.; Galvis-Castro, A.; Salgado, R.; Prezzi, M.; Fridman, D. (2022). Experimental measurement of particle crushing around model piles jacked in a calibration chamber. Acta Geotech., 8, doi:10.1007/s11440-022-01681-8.Otwórz DOI
  • [23] Henke, S.; Grabe, J. (2006). Simulation of pile driving by 3-dimensional Finite-Element analysis. Proc. 17th Eur. Young Geotech. Eng. Conf.
  • [24] Haque, M.N.; Abu-Farsakh, M.Y.; Zhang, Z. (2020). Evaluation of pile capacity from CPT and pile setup phenomenon. Int. J. Geotech. Eng., 14, 196–205, doi:10.1080/19386362.2017.1413035.Otwórz DOI
  • [25] Eslami, A.; Valikhah, F.; Veiskarami, M.; Salehi, M. (2017). CPT-Based Investigation for Pile Toe and Shaft Resistances Distribution. Geotech. Geol. Eng., 35, 2891–2905, doi:10.1007/s10706-017-0287-8.Otwórz DOI
  • [26] Żarkiewicz, K. (2018). Laboratory research of toe resistance based on static pile load tests in different schemes. Civ. Envionmental Eng. Reports, 28, 80–81, doi:10.2478/ceer-2018-0014.Otwórz DOI
  • [27] Meyer, Z.; Żarkiewicz, K. (2017). Mechanizm formowania się oporu pobocznicy przy podstawie pala określony na podstawie badań laboratoryjnych. Inżynieria i Bud., R. 73, nr 5.
  • [28] Żarkiewicz, K.; Meyer, Z. (2016). Nowe spojrzenie na współpracę pala z gruntem w świetle badań laboratoryjnych. Wiadomości Proj. Budownictwa, maj.
  • [29] Żarkiewicz, K.; Qatrameez, W. (2021). Assessment of Stress in the Soil Surrounding the Axially Loaded Model Pile by Thin, Flexible Sensors. Sensors, 21, doi:10.3390/s21217214.Otwórz DOI
  • [30] PN-EN ISO 14688-1:2018-05. Geotechnical investigation and testing – Identification and classification of soil – Part 1: Identification and description (ISO 14688-1:2017).
  • [31] Kamal, Z.A.; Arab, M.G.; Dif, A. (2016). Analysis of The arching phenomenon of bored piles in sand. Alexandria Eng. J., 55, 2639–2645. doi:10.1016/j.aej.2016.06.035.Otwórz DOI
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0613130d-ec46-4b8d-89f7-baced51a0798
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.