PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Finite element analysis of mechanical stress in in-wheel motor

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
When the in-wheel motor is working, it will be affected by gravity, centrifugal force and electromagnetic force. These three kinds of mechanical loads will affect the mechanical stress characteristics of the in-wheel motor, and then affect the reliability of the in-wheel motor structure. In order to understand the influence of the above loads on the mechanical stress of the in-wheel motor, this paper takes a 15-kW built-in permanent magnet in-wheel motor as the research object. Based on the establishment of the electromagnetic field and structure field coupling analysis model of the in-wheel motor, the mechanical stress of the in-wheel motor under different mechanical loads under rated and peak conditions are calculated and analyzed, and the influence of different mechanical loads on the stress and deformation of the in-wheel motor are studied. The research results show that, regardless of the rated operating condition or the peak operating condition, the in-wheel motor has the largest mechanical stress and deformation under the combined action of centrifugal force and electromagnetic force, and the smallest mechanical stress and deformation under the action of gravity only; under the same load (except for the case of gravity only), the stress and deformation of the in-wheel motor under the peak operating condition are larger than those under the rated operating condition; and the maximum stress and deformation of the in-wheel motor appear at the rotor magnetic bridge and the inner edge of the rotor, respectively, so the rotor is an easily damaged part of the in-wheel motor.
Rocznik
Strony
455--469
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
  • Shandong University of Technology, School of Transportation and Vehicle Engineering China
Bibliografia
  • [1] Chen C.Y., Research on the vertical coupled vibration of electric vehicles driven by four-wheel hub motors, Master Thesis, School of Automobile Engineering, Harbin Institute of Technology, Harbin (2018).
  • [2] Tan D., Song F., The advances on the study of heating and cooling issues for in-wheel-motor-driven systems, International Journal of Electric and Hybrid Vehicles, vol. 9, no. 2, pp. 121–133 (2017), DOI: 10.1504/IJEHV.2017.085342.
  • [3] Feng J., Tan D., Yuan M., Influence of road excitation on thermal field characteristics of the watercooled IWM, Archives of Electrical Engineering, vol. 70, no. 3, pp. 689–704 (2021), DOI: 10.24425/aee.2021.137582.
  • [4] Qiu H.B., Zhang Y., Yang C.X., Yi R., Performance analysis and comparison of PMSM with concentrated winding and distributed winding, Archives of Electrical Engineering, vol. 69, no. 2, pp. 303–317 (2020), DOI: 10.24425/aee.2020.133027.
  • [5] Tian D., Analysis of rotor dynamics characteristics of high-speed permanent magnet motors, Master Thesis, School of Electrical Engineering, Shenyang University of Technology, Shenyang (2016).
  • [6] Chaithongsuk S., Takorabet N., Rahouadj R., Design and Construction of IPM Synchronous Motor with Magnetic and Mechanical Stress Analysis, 2019 19th International Symposium on ElectromagneticFields in Mechatronics, Electrical and Electronic Engineering (ISEF), pp. 1–2 (2019), DOI: 10.1109/ISEF45929.2019.9096897.
  • [7] Lin R.Y., Sudhoff S.D., Krousgrill C., Analytical method to compute bridge stresses in V-shape IPMs, IET Electric Power Applications, vol. 12, no. 7, pp. 938–945 (2018), DOI: 10.1049/iet-epa.2018.0053.
  • [8] Chu G.Y., Dutta R., Rahman M.F., Lovatt H., Sarlioglu B., Analytical Calculation of Maximum Mechanical Stress on the Rotor of Interior Permanent-Magnet Synchronous Machines, IEEE Transactions on Industry Applications, vol. 56, no. 2, pp. 1321–1331 (2020), DOI: 10.1109/TIA.2019.2960756.
  • [9] Chu G.Y., Dutta R., Rahman M.F., Investigation of the Stress Concentration Factor for Estimating Maximum Mechanical Stress of Interior Permanent-Magnet Machines, in 2018, XIII Int. Conf. on Electrical Machines, 3–6 Sept., pp. 798–804 (2018), DOI: 10.1109/ICELMACH.2018.8507225.
  • [10] Chu G.Y., Dutta R., Lovatt H., Sarlioglu B., Rahman M.F., Analytical Calculation of Maximum Mechanical Stress on the Rotor of the Interior Permanent-Magnet Synchronous Machine, in 2018 IEEE Energy Conversion Congr. and Expo. (ECCE), 23–27 Sept., pp. 255–261 (2018), DOI: 10.1109/ECCE. 2018.8557418.
  • [11] Kleilat I., Benkara K., Friedrich G., Vivier S., Dib R., Comparison of two Analytical Methods for Calculating the Maximum Mechanical Stress in the Rotor of High Speed Assisted Synchronous Reluctance Machines, 2019 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 1669–1674 (2019), DOI: 10.1109/TIA.2020.3040946.
  • [12] Jung J.W., Jeo S.M., Song D.H., Mechanical Stress Reduction of Rotor Core of Interior Permanent Magnet Synchronous Motor, IEEE Transactions on Magnetics, vol. 48, no. 2, pp. 911–914 (2012), DOI: 10.1109/TMAG.2011.2172582.
  • [13] Huang T., Ruan J.J., Zhang Y.J., Sun M.Y., Liu H.L., Guan W.M., Hu Y.C., Magneto-Structural Coupling Field Analysis on the End Winding of an Multi-Phase Induction Machine, 2012 Sixth International Conference on Electromagnetic Field Problems and Applications, pp. 1–4 (2012), DOI: 10.1109/ICEF.2012.6310331.
  • [14] Guo S., Guo H., Xu J.Q., Six-phase permanent magnet fault-tolerant hub motor multi-physics comprehensive design method, Journal of Beijing University of Aeronautics and Astronautics, vol. 45, no. 3, pp. 520–528 (2019), DOI: 10.13700/j.bh.1001-5965.2018.0360.
  • [15] Mohammed O.A., Calvert T.E., Petersen L., McConnell R., Transient modeling of coupled magnetoelastic problems in electric machines, IEEE Power Engineering Society Summer Meeting, vol. 1, pp. 281–287 (2002), DOI: 10.1109/PESS.2002.1043233.
  • [16] Ding Y., Chen Y.Y., Zhuang J.H., Li X.J., Liu F.J., Design and Performance Investigation of Double-side Hybrid Excitation Flux-switching Machine, 2018 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD) IEEE, pp. 1–2 (2018), DOI: 10.1109/ASEMD.2018.8558914.
  • [17] Gao J., Zhong-Liang A.N., Chen L., Zhou T., Rotor structure analysis of low speed and high torque permanent magnet motor, Small and Special Electrical Machines (in Chinese), vol. 46, no. 12, pp. 4–7 (2018).
  • [18] Lyskawinski W., Comparative analysis of energy performance of squirrel cage induction motor, linestart synchronous reluctance and permanent magnet motors employing the same stator design, Archives of Electrical Engineering, vol. 69, no. 4, pp. 967–981 (2020), DOI: 10.24425/aee.2020.134642.
  • [19] Feng X., Research on vibration of variable frequency permanent magnet motor considering magnetostrictive effect, Master Thesis, School of Electrical Engineering, Hebei University of Technology, Hebei (2014).
  • [20] Yin Q.H., Research on the electromagnetic-mechanical stress coupling field of permanent magnet synchronous motors, Master Thesis, School of Electrical Engineering, North China Electric Power University, Beijing (2015).
  • [21] Feng C., Li Y., Liang P., Pei Y., Calculation of the Maximum Mechanical Stress on the Rotor of Interior Permanent-Magnet Synchronous Motors, IEEE Transactions on Industrial Electronics, vol. 63, no. 6, pp. 3420–3432 (2016), DOI: 10.1109/TIE.2016.2524410.
  • [22] Roache P.J., Error bars for CFD, 41st Aerospace Sciences Meeting and Exhibit (2003), DOI: 10.2514/6.2003-408
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-06118d7b-83ff-4854-8a9c-50b39dba24de
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.